Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Ambio ; 52(11): 1819-1831, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37725249

RESUMEN

Integrated long-term, in-situ observations are needed to document ongoing environmental change, to "ground-truth" remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location.

3.
Sci Total Environ ; 766: 142597, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33077205

RESUMEN

Nitrogen (N) fertilization is a routine practice in boreal forests but its effects on fungal functional guilds in Pinus sylvestris forests are still incompletely understood. Sampling is often restricted to the upper organic horizons and based on DNA extracted from mixtures of soil and roots without explicitly analysing different spatial niches. Fungal community structure in soil and roots of an 85-y-old Pinus sylvestris forest was investigated using high throughput sequencing. Fertilized plots had been treated with a single dose of N fertilizer, 15 months prior to sampling. Species richness of fungi colonizing roots was reduced in all horizons by N fertilization. In contrast, species richness of soil fungi in the organic horizon was increased by N fertilization, but unaffected in the mineral horizons. Community composition of fungi colonizing roots differed from that of soil fungi, and both communities were significantly influenced by soil horizon and N. The ectomycorrhizal community composition in both roots and soil was significantly affected by N fertilization but no significant effect was found on saprotrophic fungi. The results highlight the importance of analysing the rhizosphere soil and root compartments separately since the fungal communities in these two niches appear to respond differently to environmental perturbations involving the addition of nitrogen.


Asunto(s)
Micorrizas , Rizosfera , Fertilización , Hongos , Raíces de Plantas , Suelo , Microbiología del Suelo , Taiga
4.
Ambio ; 45 Suppl 2: 188-202, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26744053

RESUMEN

We present a framework for evaluating and communicating effects of human activity on water quality in managed forests. The framework is based on the following processes: atmospheric deposition, weathering, accumulation, recirculation and flux. Impairments to water quality are characterized in terms of their extent, longevity and frequency. Impacts are communicated using a "traffic lights" metaphor for characterizing severity of water quality impairments arising from forestry and other anthropogenic pressures. The most serious impairments to water quality in managed boreal forests include (i) forestry activities causing excessive sediment mobilization and extirpation of aquatic species and (ii) other anthropogenic pressures caused by long-range transport of mercury and acidifying pollutants. The framework and tool presented here can help evaluate, summarize and communicate the most important issues in circumstances where land management and other anthropogenic pressures combine to impair water quality and may also assist in implementing the "polluter pays" principle.


Asunto(s)
Agricultura Forestal/métodos , Calidad del Agua , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Política Ambiental , Bosques , Incertidumbre
5.
Ambio ; 44(6): 521-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25663527

RESUMEN

Large-scale forestry operations, like clear-cutting, may impair surface water quality if not done with environmental considerations in mind. Catchment and country level estimates of nutrient loads from forestry are generally based on specific export values, i.e., changes in annual exports due to the implemented forestry operations expressed in kg ha(-1). We introduce here a specific concentration approach as a method to estimate the impact of clear-cutting on nutrient concentrations and export in headwater streams. This new method is potentially a more dynamic and flexible tool to estimate nutrient loads caused by forestry, because variation in annual runoff can be taken into account in load assessments. We combined water quality data from eight boreal headwater catchment pairs located in Finland and Sweden, where the effect of clear-cutting on stream water quality has been studied experimentally. Statistically significant specific concentration values could be produced for total nitrogen, nitrate, ammonium, and phosphate. The significant increases in the concentrations of these nutrients occurred between 2 and 6 years after clear-cutting. Significant specific concentration values could not be produced for total phosphorus and total organic carbon with the whole dataset, although in some single studies significant increases in their concentrations after clear-cutting were observed. The presented method enables taking into account variation in runoff, temporal dynamics of effects, and the proportional size of the treated area in load calculations. The number of existing studies considering large site-specific variation in responses to clear-cutting is small, and therefore further empirical studies are needed to improve predictive capabilities of the specific concentration values.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua/química , Compuestos de Amonio/análisis , Nitrato-Reductasa , Nitratos/análisis , Nitrógeno/análisis , Fosfatos/análisis
6.
Ambio ; 43(2): 244-56, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23420472

RESUMEN

The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity.


Asunto(s)
Agricultura Forestal , Calidad del Agua , Finlandia , Países Escandinavos y Nórdicos , Ciclo Hidrológico
7.
Ambio ; 39(8): 555-66, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21141775

RESUMEN

Riparian forests (RF) growing along streams, rivers and lakes comprise more than 2% of the forest area in the Nordic countries (considering a 10 m wide zone from the water body). They have special ecological functions in the landscape. They receive water and nutrients from the upslope areas, are important habitats for biodiversity, have large soil carbon stores, but may emit more greenhouse gases (GHG) than the uplands. In this article, we present a review of the environmental services related to water protection, terrestrial biodiversity, carbon storage and greenhouse gas dynamics provided by RF in the Nordic countries. We discuss the benefits and trade-offs when leaving the RF as a buffer against the impacts from upland forest management, in particular the impacts of clear cutting. Forest buffers are effective in protecting water quality and aquatic life, and have positive effects on terrestrial biodiversity, particularly when broader than 40 m, whereas the effect on the greenhouse gas exchange is unclear.


Asunto(s)
Conservación de los Recursos Naturales , Árboles , Ecosistema , Países Escandinavos y Nórdicos , Movimientos del Agua
8.
Ambio ; 38(7): 347-56, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19943390

RESUMEN

The effects of clear-cutting on stream-water chemistry in northern Sweden remain largely unexplored. Here we report data collected during a reference period and the first two years after logging in two typical partially harvested northern catchments; the objective was to compare water chemistry along the stream with and without a forest buffer. Two typical uncut reference catchments are included for comparison. Runoff was measured at the outlet of each catchment, and water samples were generally taken every second week and analyzed for 20 constituents. Logging resulted in increased runoff and increased concentrations of sodium, potassium, chloride, total nitrogen, total phosphorus, and suspended material from both catchments. Nitrate (NO3-) leaching increased only from the catchment without a forest buffer. It has not yet been possible to evaluate fully the effects of the forest buffer on the NO3- leaching because the uphill clear-cut area leached minimal amounts of NO3-.


Asunto(s)
Agricultura Forestal , Agua Dulce/química , Contaminantes Químicos del Agua/análisis , Carbono/análisis , Cationes/análisis , Clima Frío , Mercurio/análisis , Nitratos/análisis , Compuestos Orgánicos/análisis , Suecia , Factores de Tiempo
9.
Ambio ; 38(7): 357-63, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19943391

RESUMEN

To understand how forest harvest influences the aquatic environment, it is essential to determine the changes in the flow regime. This paper presents changes in the hydrological regime during the first 2 y after harvest in two catchments of the Balsjö Catchment Study in Sweden. The changes were judged relative to a reference catchment, calibrated during an 18-mo pretreatment period starting in September 2004. From August 2006 through March 2008, there was an average of 35% more runoff from the harvested catchments relative to the reference. The flow increased most during the growing seasons and at base flows (<1 mm d(-1); 58-99% increase), followed by dormant season and intermediate flows (30-43%). No significant changes were observed during the highest flows (over 5 mm d(-1)), except for the spring flood a few weeks after harvest, which was delayed and attenuated. Large relative changes in low flow may influence the ecosystem by altering the aquatic habitat.


Asunto(s)
Agricultura Forestal , Estaciones del Año , Movimientos del Agua , Contaminación del Agua , Clima Frío , Suecia
10.
Ambio ; 38(7): 373-80, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19943393

RESUMEN

Mercury (Hg) levels are alarmingly high in fish from lakes across Fennoscandia and northern North America. The few published studies on the ways in which silviculture practices influence this problem indicate that forest operations increase Hg in downstream aquatic ecosystems. From these studies, we estimate that between one-tenth and one-quarter of the Hg in the fish of high-latitude, managed forest landscapes can be attributed to harvesting. Forestry, however, did not create the elevated Hg levels in the soils, and waterborne Hg/MeHg concentrations downstream from harvested areas are similar to those from wetlands. Given the current understanding of the way in which silviculture impacts Hg cycling, most of the recommendations for good forest practice in Sweden appear to be appropriate for high-latitude regions, e.g., leaving riparian buffer zones, as well as reducing disturbance at stream crossings and in moist areas. The recommendation to restore wetlands and reduce drainage, however, will likely increase Hg/MeHg loadings to aquatic ecosystems.


Asunto(s)
Conservación de los Recursos Naturales , Peces/metabolismo , Agricultura Forestal/normas , Mercurio/metabolismo , Animales , Clima Frío , Monitoreo del Ambiente , Suecia
11.
Tree Physiol ; 18(12): 823-828, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12651404

RESUMEN

We measured fine root N concentration, root in vivo nitrate reductase activity (NRA) and root uptake capacity for (15)NH(4) (+) and (15)NO(3) (-) along an N-deposition gradient from northern Sweden to central Europe, encompassing a variation in N deposition rates of < 5 to about 40 kg N ha(-1) year(-1). The focus was on Picea abies (L.) Karst., but Fagus sylvatica L. in central Europe and Pinus sylvestris L. and Betula spp. in northern Sweden were also studied. We assumed that, with an increased supply of N, root N concentration would increase, activity of the inducible enzyme nitrate reductase (NR) in roots would increase, particularly with an increasing supply of NO(3) (-), and root uptake capacity for inorganic N would decline, reflecting a lower demand for N. As expected, fine root N concentration in P. abies increased along the gradient from 1.1% (d.w. basis) at the northern site to 2.1% at central European sites. This variation compared with an amplitude of 0.7-1.5% for foliage. Root in vivo NRA was low in northern Sweden, and higher in central Europe. Picea abies and broad-leaved species had similar root NRA. At one location in Denmark and one in France, however, root NRA in the spring was very high in F. sylvatica. Root uptake capacity for NO(3) (-), as measured in excised roots, was low throughout the transect, but in P. abies, it was high for NH(4) (+) in northern Sweden and decreased by a factor of 4 with increasing N deposition. A similar pattern was found in the broad-leaved species. Unless the higher availability of NO(3) (-) and lower specific root uptake capacity per unit root mass for inorganic N in central Europe (compared with northern Sweden) is balanced by a higher root biomass, the central European forests will be a weaker sink for N.

12.
New Phytol ; 136(4): 713-720, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33863102

RESUMEN

The 15 N natural abundance and N concentrations of fruit bodies from 70 species (23 genera) of ectomycorrhizal fungi found in boreal forests are presented. Large intraspecific and intrageneric differences were found, e.g. 8.3‰15 N in the species Dermocybe crocea and 12.6‰ in the genus Cortinarius. In addition, significant differences in both δ15 N and %N were found between different parts of fruit bodies, with cap material giving consistently higher values. Proteins and amino acids were enriched by 9.7±0.4‰ (mean ± 1 SE) relative to chitin, irrespective of the part of the fruit body examined. Chitin had δ15 N values similar to that of plant hosts. The higher δ15 N and %N values of the caps than of the stipes probably reflect a higher portion of proteins and amino acids in the caps. The δ15 N of mycorrhizal fungi can be a function of the N species used (organic N, NH4 + , NO3 - ), the depth of soil at which the mycelium occurs, and metabolic fractionations. The metabolic fractionations, e.g. potential transaminations during the flux of N from the soil through the fungus to the plant, make it difficult, at present, to make inferences about sources of N based on δ15 N values alone. No effect of sample drying temperature on δ15 values of fungal material was detected.

13.
Oecologia ; 108(2): 207-214, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28307831

RESUMEN

15N natural abundances of soil total N, roots and mycorrhizas were studied in surface soil profiles in coniferous and broadleaved forests along a transect from central to northern Europe. Under conditions of N limitation in Sweden, there was an increase in δ15N of soil total N of up to 9% from the uppermost horizon of the organic mor layer down to the upper 0-5 cm of the mineral soil. The δ15N of roots was only slightly lower than that of soil total N in the upper organic horizon, but further down roots were up to 5% depleted under such conditions. In experimentally N-enriched forest in Sweden, i.e. in plots which have received an average of c. 100 kg N ha-1 year-1 for 20 years and which retain less than 50% of this added N in the stand and the soil down to 20 cm depth, and in some forests in central Europe, the increase in δ15N with depth in soil total N was smaller. An increase in δ15N of the surface soil was even observed on experimentally N-enriched plots, although other data suggest that the N fertilizer added was depleted in15N. In such cases roots could be enriched in15N relative to soil total N, suggesting that labelling of the surface soil is via the pathway: - available pools of N-plant N-litter N. Under N-limiting conditions roots of different species sampled from the same soil horizon showed similar δ15N. By contrast, in experimentally N-enriched forest δ15N of roots increased in the sequence: ericaceous dwarf shrubs

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...