Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2300413, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36905683

RESUMEN

Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.

2.
ACS Cent Sci ; 8(9): 1238-1257, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36188342

RESUMEN

Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer-lipid hybrids. Femtomolar concentrations of the polymer nanomimics were sufficient to inhibit herpes simplex virus type 2 (HSV-2) entry into epithelial cells, while higher doses were needed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given their observed virustatic mode of action, the nanomimics were also tested with malaria parasite blood-stage merozoites, which lose their invasive capacity after a few minutes. Efficient inhibition of merozoite invasion of red blood cells was demonstrated both in vitro and in vivo using a preclinical rodent malaria model. We envision these nanomimics forming an adaptable platform for developing pathogen entry inhibitors and as immunomodulators, wherein nanomimic-inhibited pathogens can be secondarily targeted to sites of immune recognition.

3.
Small ; 18(27): e2201993, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35670200

RESUMEN

Polymersomes are vesicular structures self-assembled from amphiphilic block copolymers and are considered an alternative to liposomes for applications in drug delivery, immunotherapy, biosensing, and as nanoreactors and artificial organelles. However, the limited availability of systematic stability, protein fouling (protein corona formation), and blood circulation studies hampers their clinical translation. Poly(2-oxazoline)s (POx) are valuable antifouling hydrophilic polymers that can replace the current gold-standard, poly(ethylene glycol) (PEG), yet investigations of POx functionality on nanoparticles are relatively sparse. Herein, a systematic study is reported of the structural, dynamic and antifouling properties of polymersomes made of poly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA). The study relates in vitro antifouling performance of the polymersomes to atomistic molecular dynamics simulations of polymersome membrane hydration behavior. These observations support the experimentally demonstrated benefit of maximizing the length of PMOXA (degree of polymerization (DP) > 6) while keeping PDMS at a minimal length that still provides sufficient membrane stability (DP > 19). In vitro macrophage association and in vivo blood circulation evaluation of polymersomes in zebrafish embryos corroborate these findings. They further suggest that single copolymer presentation on polymersomes is outperformed by blends of varied copolymer lengths. This study helps to rationalize design rules for stable and low-fouling polymersomes for future medical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Pez Cebra , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos , Oxazoles
4.
Nat Commun ; 11(1): 6172, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268772

RESUMEN

Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos.


Asunto(s)
Embrión no Mamífero/ultraestructura , Imagen Molecular/métodos , Espectrometría Raman/métodos , Imagen de Lapso de Tiempo/métodos , Pez Cebra/anatomía & histología , Animales , Animales Modificados Genéticamente , Embrión no Mamífero/metabolismo , Imagen Molecular/instrumentación , Análisis Multivariante , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/crecimiento & desarrollo , Mycobacterium marinum/patogenicidad , Espectrometría Raman/instrumentación , Imagen de Lapso de Tiempo/instrumentación , Cicatrización de Heridas/fisiología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
5.
ACS Cent Sci ; 6(5): 695-703, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32490186

RESUMEN

The recently discovered CRISPR-Cas gene editing system and its derivatives have found numerous applications in fundamental biology research and pharmaceutical sciences. The need for precise external control over the gene editing and regulatory events has driven the development of inducible CRISPR-Cas systems. While most of the light-controllable CRISPR-Cas systems are based on protein engineering, we developed an alternative synthetic approach based on modification of crRNA/tracrRNA duplex (guide RNA or gRNA) with photocaging groups, preventing the gRNA from recognizing its genome target sequence until its deprotection is induced within seconds of illumination. This approach relies on a straightforward solid-phase synthesis of the photocaged gRNAs, with simpler purification and characterization processes in comparison to engineering a light-responsive protein. We have demonstrated the feasibility of photocaging of gRNAs and light-mediated DNA cleavage upon brief exposure to light in vitro. We have achieved light-mediated spatiotemporally resolved gene editing as well as gene activation in cells, whereas photocaged gRNAs showed virtually no detectable gene editing or activation in the absence of light irradiation. Finally, we have applied this system to spatiotemporally control gene editing in zebrafish embryos in vivo, enabling the use of this strategy for developmental biology and tissue engineering applications.

6.
Biomacromolecules ; 21(4): 1489-1498, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32092254

RESUMEN

In this study we have developed biodegradable polymeric nanoparticles (NPs) containing the cytostatic drugs mertansine (MRT) or cabazitaxel (CBZ). The NPs are based on chitosan (CS) conjugate polymers synthesized with different amounts of the photosensitizer tetraphenylchlorin (TPC). These TPC-CS NPs have high loading capacity and strong drug retention due to π-π stacking interactions between the drugs and the aromatic photosensitizer groups of the polymers. CS polymers with 10% of the side chains containing TPC were found to be optimal in terms of drug loading capacity and NP stability. The TPC-CS NPs loaded with MRT or CBZ displayed higher cytotoxicity than the free form of these drugs in the breast cancer cell lines MDA-MB-231 and MDA-MB-468. Furthermore, light-induced photochemical activation of the NPs elicited a strong photodynamic therapy effect on these breast cancer cells. Biodistribution studies in mice showed that most of the TPC-CS NPs accumulated in liver and lungs, but they were also found to be localized in tumors derived from HCT-116 cells. These data suggest that the drug-loaded TPC-CS NPs have a potential in combinatory anticancer therapy and as contrast agents.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Preparaciones Farmacéuticas , Fotoquimioterapia , Animales , Portadores de Fármacos , Ratones , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...