Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 34(1): 59-74.e10, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34932984

RESUMEN

Unimolecular triple incretins, combining the activity of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG), have demonstrated reduction in body weight and improved glucose control in rodent models. We developed SAR441255, a synthetic peptide agonist of the GLP-1, GCG, and GIP receptors, structurally based on the exendin-4 sequence. SAR441255 displays high potency with balanced activation of all three target receptors. In animal models, metabolic outcomes were superior to results with a dual GLP-1/GCG receptor agonist. Preclinical in vivo positron emission tomography imaging demonstrated SAR441255 binding to GLP-1 and GCG receptors. In healthy subjects, SAR441255 improved glycemic control during a mixed-meal tolerance test and impacted biomarkers for GCG and GIP receptor activation. Single doses of SAR441255 were well tolerated. The results demonstrate that integrating GIP activity into dual GLP-1 and GCG receptor agonism provides improved effects on weight loss and glycemic control while buffering the diabetogenic risk of chronic GCG receptor agonism.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Control Glucémico , Incretinas , Receptores de la Hormona Gastrointestinal , Receptores de Glucagón , Pérdida de Peso , Animales , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Incretinas/farmacología , Péptidos/farmacología , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de Glucagón/agonistas , Pérdida de Peso/efectos de los fármacos
2.
J Pharmacol Exp Ther ; 376(2): 190-203, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33203659

RESUMEN

As a gut-restricted, nonabsorbed therapy, polymeric bile acid sequestrants (BAS) play an important role in managing hyperlipidemia and hyperglycemia. Similarly, nonabsorbable sequestrants of dietary phosphate have been used for the management of hyperphosphatemia in end-stage renal disease. To evaluate the potential utility of such polymer sequestrants to treat type 2 diabetes (T2D) and its associated renal and cardiovascular complications, we synthesized a novel polymeric sequestrant, SAR442357, possessing optimized bile acid (BA) and phosphate sequestration characteristics. Long-term treatment of T2D obese cZucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) with SAR442357 resulted in enhanced sequestration of BAs and phosphate in the gut, improved glycemic control, lowering of serum cholesterol, and attenuation of diabetic kidney disease (DKD) progression. In comparison, colesevelam, a BAS with poor phosphate binding properties, did not prevent DKD progression, whereas losartan, an angiotensin II receptor blocker that is widely used to treat DKD, showed no effect on hyperglycemia. Analysis of hepatic gene expression levels of the animals treated with SAR442357 revealed upregulation of genes responsible for the biosynthesis of cholesterol and BAs, providing clear evidence of target engagement and mode of action of the new sequestrant. Additional hepatic gene expression pathway changes were indicative of an interruption of the enterohepatic BA cycle. Histopathological analysis of ZSF1 rat kidneys treated with SAR442357 further supported its nephroprotective properties. Collectively, these findings reveal the pharmacological benefit of simultaneous sequestration of BAs and phosphate in treating T2D and its associated comorbidities and cardiovascular complications. SIGNIFICANCE STATEMENT: A new nonabsorbed polymeric sequestrant with optimum phosphate and bile salt sequestration properties was developed as a treatment option for DKD. The new polymeric sequestrant offered combined pharmacological benefits including glucose regulation, lipid lowering, and attenuation of DKD progression in a single therapeutic agent.


Asunto(s)
Antihipertensivos/uso terapéutico , Ácidos y Sales Biliares/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Hidrogeles/uso terapéutico , Hipertensión/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Animales , Antihipertensivos/síntesis química , Colesterol/metabolismo , Hidrogeles/síntesis química , Hipoglucemiantes/síntesis química , Hígado/metabolismo , Fosfatos/metabolismo , Poliaminas/química , Ratas , Ratas Zucker
3.
J Biol Chem ; 295(36): 12605-12617, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32647007

RESUMEN

In the heart, the serine carboxypeptidase cathepsin A (CatA) is distributed between lysosomes and the extracellular matrix (ECM). CatA-mediated degradation of extracellular peptides may contribute to ECM remodeling and left ventricular (LV) dysfunction. Here, we aimed to evaluate the effects of CatA overexpression on LV remodeling. A proteomic analysis of the secretome of adult mouse cardiac fibroblasts upon digestion by CatA identified the extracellular antioxidant enzyme superoxide dismutase (EC-SOD) as a novel substrate of CatA, which decreased EC-SOD abundance 5-fold. In vitro, both cardiomyocytes and cardiac fibroblasts expressed and secreted CatA protein, and only cardiac fibroblasts expressed and secreted EC-SOD protein. Cardiomyocyte-specific CatA overexpression and increased CatA activity in the LV of transgenic mice (CatA-TG) reduced EC-SOD protein levels by 43%. Loss of EC-SOD-mediated antioxidative activity resulted in significant accumulation of superoxide radicals (WT, 4.54 µmol/mg tissue/min; CatA-TG, 8.62 µmol/mg tissue/min), increased inflammation, myocyte hypertrophy (WT, 19.8 µm; CatA-TG, 21.9 µm), cellular apoptosis, and elevated mRNA expression of hypertrophy-related and profibrotic marker genes, without affecting intracellular detoxifying proteins. In CatA-TG mice, LV interstitial fibrosis formation was enhanced by 19%, and the type I/type III collagen ratio was shifted toward higher abundance of collagen I fibers. Cardiac remodeling in CatA-TG was accompanied by an increased LV weight/body weight ratio and LV end diastolic volume (WT, 50.8 µl; CatA-TG, 61.9 µl). In conclusion, CatA-mediated EC-SOD reduction in the heart contributes to increased oxidative stress, myocyte hypertrophy, ECM remodeling, and inflammation, implicating CatA as a potential therapeutic target to prevent ventricular remodeling.


Asunto(s)
Catepsina A/metabolismo , Miocitos Cardíacos/metabolismo , Proteolisis , Superóxido Dismutasa/metabolismo , Remodelación Ventricular , Animales , Catepsina A/genética , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/patología , Superóxido Dismutasa/genética
4.
Sci Rep ; 9(1): 16161, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695063

RESUMEN

The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Dieta Reductora , Derivación Gástrica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Gliosis/genética , Adiposidad , Animales , Astrocitos/metabolismo , Biomarcadores , Dieta Alta en Grasa , Ingestión de Alimentos , Proteína Ácida Fibrilar de la Glía/análisis , Péptido 1 Similar al Glucagón/sangre , Inflamación/genética , Captura por Microdisección con Láser , Masculino , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Obesidad/etiología , Obesidad/cirugía , Péptido YY/sangre , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN , Pérdida de Peso
5.
JACC Basic Transl Sci ; 4(3): 332-344, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31312757

RESUMEN

After myocardial infarction, remote ventricular remodeling and atrial cardiomyopathy progress despite successful revascularization. In a rat model of ventricular ischemia/reperfusion, pharmacological inhibition of the protease activity of cathepsin A initiated at the time point of reperfusion prevented extracellular matrix remodeling in the atrium and the ventricle remote from the infarcted area. This scenario was associated with preservation of more viable ventricular myocardium and the prevention of an arrhythmogenic and functional substrate for atrial fibrillation. Remote ventricular extracellular matrix remodeling and atrial cardiomyopathy may represent a promising target for pharmacological atrial fibrillation upstream therapy following myocardial infarction.

6.
Peptides ; 118: 170100, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31212005

RESUMEN

OBJECTIVE: Roux-en-Y gastric bypass (RYGB) leads to rapid remission of type 2 diabetes (T2D) and sustained body weight loss, but the underlying molecular mechanisms are still not fully understood. To further elucidate these mechanisms and identify potentially novel preprohormone encoding genes with anti-diabetic and/or anti-obesity properties, we performed a comprehensive analysis of gene expression changes in enteroendocrine cells after RYGB in diet-induced obese (DIO) rats. METHODS: The mRNA expression profiles of enteroendocrine cell enriched samples were characterized at 9, 22 and 60 days after RYGB surgery in a DIO rat model. Enteroendocrine cells were identified by chromogranin A immunohistochemistry and isolated by laser capture microdissection (LCM) from five regions covering the full rostro-caudal extension of the gastrointestinal (GI) tract. RNA sequencing and bioinformatic analyses were subsequently applied to identify differentially expressed preprohormone encoding genes. RESULTS: From the analysis of enteroendocrine cell mRNA expression profiles, a total of 54 preprohormones encoding genes were found to be differentially regulated at one or more time-points following RYGB. These included well-known RYGB associated preprohormone genes (e.g. Gcg, Cck, Gip, Pyy and Sct) and less characterized genes with putative metabolic effects (e.g. Nmu, Guca2a, Guca2b, Npw and Adm), but also 16 predicted novel preprohormone genes. Among the list of gene transcripts, Npw, Apln and Fam3d were further validated using in situ mRNA hybridization and corresponding peptides were characterized for acute effects on food intake and glucose tolerance in mice. CONCLUSION: We present a comprehensive mRNA expression profile of chromogranin A positive enteroendocrine cells following RYGB in rats. The data provides a region-specific characterization of all regulated preprohormone encoding genes in the rat GI tract including 16 not hitherto known. The comprehensive catalogue of preprohormone expression changes may support our understanding of hormone mediated effects of RYGB on diabetes remission and body weight reduction.


Asunto(s)
Células Enteroendocrinas/metabolismo , Derivación Gástrica , Obesidad/genética , Obesidad/metabolismo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Animales , Colecistoquinina/genética , Colecistoquinina/metabolismo , Biología Computacional , Polipéptido Inhibidor Gástrico/genética , Polipéptido Inhibidor Gástrico/metabolismo , Inmunohistoquímica , Hibridación in Situ , Captura por Microdisección con Láser , Masculino , Ratones , Obesidad/cirugía , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN , Somatostatina/genética , Somatostatina/metabolismo , Transcriptoma/genética
7.
PLoS One ; 13(1): e0189886, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29293525

RESUMEN

Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05) with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated insulin secretion.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Animales , Humanos , Secreción de Insulina , Ratones
8.
Peptides ; 101: 32-43, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29289697

RESUMEN

AIM: To determine whether intestinal expression of guanylate cyclase activator 2A (GUCA2A) and guanylate cyclase activator 2B (GUCA2B) genes is regulated in obese humans following Roux-en-Y gastric bypass (RYGB), and to evaluate the corresponding guanylin (GN) and uroguanylin (UGN) peptides for potentially contributing to the beneficial metabolic effects of RYGB. METHODS: Enteroendocrine cells were harvested peri- and post-RYGB, and GUCA2A/GUCA2B mRNA expression was compared. GN, UGN and their prohormones (proGN, proUGN) were administered subcutaneously in normal-weight mice to evaluate effects on food intake and glucose regulation. The effect of pro-UGN or UGN overexpression, using adeno-associated virus (AAV) vectors, was assessed in diet-induced obese (DIO) mice. Intracerebroventricular administration of GN and UGN was performed in rats for assessment of putative centrally mediated effects on food intake. GN and UGN, as well as their prohormones, were evaluated for effects on glucose-stimulated insulin secretion (GSIS) in rat pancreatic islets and perfused rat pancreas. RESULTS: GUCA2A and GUCA2B mRNA expression was significantly upregulated in enteroendocrine cells after RYGB. Peripheral administration of guanylins or prohormones did not influence food intake, oral glucose tolerance, and GSIS. Central administration of GN and UGN did not affect food intake in rats. Chronic AVV-mediated overexpression of UGN and proUGN had no effect on body weight or glucose homeostasis in DIO mice. CONCLUSION: GN and UGN, as well as their prohormones, do not seem to play a significant role in body weight regulation and glycemic control, suggesting that guanylin-family peptides do not show promise as targets for the treatment of obesity or diabetes.


Asunto(s)
Mantenimiento del Peso Corporal , Células Enteroendocrinas/metabolismo , Derivación Gástrica , Hormonas Gastrointestinales/biosíntesis , Regulación de la Expresión Génica , Péptidos Natriuréticos/biosíntesis , Adulto , Animales , Diabetes Mellitus/metabolismo , Diabetes Mellitus/cirugía , Femenino , Proteínas Activadoras de la Guanilato-Ciclasa/biosíntesis , Humanos , Masculino , Ratones , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/cirugía
9.
J Transl Med ; 14(1): 153, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27246731

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a major cause of heart failure. The carboxypeptidase cathepsin A is a novel target in the treatment of cardiac failure. We aim to show that recently developed inhibitors of the protease cathepsin A attenuate post-MI heart failure. METHODS: Mice were subjected to permanent left anterior descending artery (LAD) ligation or sham operation. 24 h post-surgery, LAD-ligated animals were treated with daily doses of the cathepsin A inhibitor SAR1 or placebo. After 4 weeks, the three groups (sham, MI-placebo, MI-SAR1) were evaluated. RESULTS: Compared to sham-operated animals, placebo-treated mice showed significantly impaired cardiac function and increased plasma BNP levels. Cathepsin A inhibition prevented the increase of plasma BNP levels and displayed a trend towards improved cardiac functionality. Proteomic profiling was performed for the three groups (sham, MI-placebo, MI-SAR1). More than 100 proteins were significantly altered in placebo-treated LAD ligation compared to the sham operation, including known markers of cardiac failure as well as extracellular/matricellular proteins. This ensemble constitutes a proteome fingerprint of myocardial infarction induced by LAD ligation in mice. Cathepsin A inhibitor treatment normalized the marked increase of the muscle stress marker CA3 as well as of Igγ 2b and fatty acid synthase. For numerous further proteins, cathepsin A inhibition partially dampened the LAD ligation-induced proteome alterations. CONCLUSIONS: Our proteomic and functional data suggest that cathepsin A inhibition has cardioprotective properties and support a beneficial effect of cathepsin A inhibition in the treatment of heart failure after myocardial infarction.


Asunto(s)
Catepsina A/antagonistas & inhibidores , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Inhibidores de Proteasas/uso terapéutico , Proteómica/métodos , Animales , Catepsina A/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ligadura , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Tamaño de los Órganos/efectos de los fármacos , Mapeo Peptídico , Inhibidores de Proteasas/farmacología , Proteoma/metabolismo , Ratas
10.
Neuropharmacology ; 107: 146-159, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27016016

RESUMEN

During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects.


Asunto(s)
Tronco Encefálico/metabolismo , Ingestión de Alimentos/fisiología , Conducta de Enfermedad/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Corticosterona/sangre , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Escherichia coli , Conducta de Enfermedad/efectos de los fármacos , Interleucina-1beta/sangre , Lipopolisacáridos , Masculino , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Estómago/inervación
11.
J Diabetes Res ; 2015: 404085, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25785279

RESUMEN

Diabetes mellitus is a lifelong, incapacitating metabolic disease associated with chronic macrovascular complications (coronary heart disease, stroke, and peripheral vascular disease) and microvascular disorders leading to damage of the kidneys (nephropathy) and eyes (retinopathy). Based on the current trends, the rising prevalence of diabetes worldwide will lead to increased cardiovascular morbidity and mortality. Therefore, novel means to prevent and treat these complications are needed. Under the auspices of the IMI (Innovative Medicines Initiative), the SUMMIT (SUrrogate markers for Micro- and Macrovascular hard end points for Innovative diabetes Tools) consortium is working on the development of novel animal models that better replicate vascular complications of diabetes and on the characterization of the available models. In the past years, with the high level of genomic information available and more advanced molecular tools, a very large number of models has been created. Selecting the right model for a specific study is not a trivial task and will have an impact on the study results and their interpretation. This review gathers information on the available experimental animal models of diabetic macrovascular complications and evaluates their pros and cons for research purposes as well as for drug development.


Asunto(s)
Complicaciones de la Diabetes/fisiopatología , Complicaciones de la Diabetes/terapia , Diabetes Mellitus Experimental/terapia , Modelos Animales de Enfermedad , Animales , Aterosclerosis/complicaciones , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/terapia , Ensayos Clínicos como Asunto , Enfermedad de la Arteria Coronaria/complicaciones , Angiopatías Diabéticas/terapia , Humanos , Hipoglucemiantes/uso terapéutico , Ratones , Microcirculación , Modelos Animales , Ratas , Especificidad de la Especie
12.
Am J Hypertens ; 28(2): 256-65, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25023205

RESUMEN

BACKGROUND: Hypertension and metabolic syndrome (MetS) are associated with increased sympathetic activation possibly contributing to the progression of renal damage and cardiac remodeling. Renal sympathetic denervation (RDN) decreases sympathetic renal efferent and afferent nerve activity. METHODS: Obese spontaneously hypertensive rats (SHRs-ob) were subjected to RDN at the age of 34 weeks (SHRs-ob + RDN) and were compared with sham-operated SHRs-ob and their normotensive lean controls (Ctrs). Blood pressure was measured by telemetry. Kidney and heart function were determined by magnetic resonance imaging (MRI). Renal and cardiac remodeling were characterized by immunohistochemical analyses. Animals were killed at the age of 48 weeks. RESULTS: In SHRs-ob, RDN attenuated the progressive increase in blood pressure and preserved a mean blood pressure of 156±7mm Hg compared with 220±8mm Hg in sham-operated SHRs-ob at 100 days after RDN, whereas heart rate, body weight, and metabolic parameters remained unchanged. Renal catecholamine and tyrosine hydroxylase levels were significantly reduced after RDN, suggesting effective renal denervation. Progression of renal dysfunction as characterized by increased urinary albumin/creatinine ratio and reduced glomerular filtration rate were attenuated by RDN. In SHRs-ob, renal perfusion was significantly reduced and normalized by RDN. Cardiac fibrosis and cardiac diastolic dysfunction measured by MRI and invasive pressure measurements were significantly attenuated by RDN. CONCLUSIONS: In SHRs-ob, progressive increase in blood pressure and progression of renal injury and cardiac remodelling are mediated by renal sympathetic activation as they were attenuated by RDN.


Asunto(s)
Lesión Renal Aguda/metabolismo , Presión Sanguínea , Hipertensión/fisiopatología , Riñón/inervación , Miocardio/patología , Obesidad/fisiopatología , Insuficiencia Renal Crónica/metabolismo , Remodelación Ventricular , Lesión Renal Aguda/etiología , Animales , Creatinina/metabolismo , Progresión de la Enfermedad , Hipertensión/complicaciones , Riñón/fisiopatología , Imagen por Resonancia Magnética , Masculino , Obesidad/complicaciones , Ratas , Ratas Endogámicas SHR , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/etiología , Simpatectomía , Sistema Nervioso Simpático
13.
Future Med Chem ; 5(4): 399-409, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23495688

RESUMEN

The lysosomal serine carboxypeptidase CatA has a very important and well-known structural function as well as a, so far, less explored catalytic function. A complete loss of the CatA protein results in the lysosomal storage disease galactosialidosis caused by intralysosomal degradation of ß-galactosidase and neuraminidase 1. However, mice with a catalytically inactive CatA enzyme show no signs of this disease. This observation establishes a clear distinction between structural and catalytic functions of the CatA enzyme. Recently, several classes of orally bioavailable synthetic inhibitors of CatA have been identified. Pharmacological studies in rodents indicate a remarkable influence of CatA inhibition on cardiovascular disease progression and identify CatA as a promising novel target for the treatment of heart failure.


Asunto(s)
Catepsina A/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/enzimología , Animales , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Catepsina A/análisis , Catepsina A/metabolismo , Inhibidores Enzimáticos/farmacología , Corazón/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Terapia Molecular Dirigida/métodos , Peptidomiméticos/química , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Ratas , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Especificidad por Sustrato
14.
J Transl Med ; 11: 84, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23537041

RESUMEN

BACKGROUND: Lixisenatide is a glucagon-like peptide-1 analog which stimulates insulin secretion and inhibits glucagon secretion and gastric emptying. We investigated cardioprotective effects of lixisenatide in rodent models reflecting the clinical situation. METHODS: The acute cardiac effects of lixisenatide were investigated in isolated rat hearts subjected to brief ischemia and reperfusion. Effects of chronic treatment with lixisenatide on cardiac function were assessed in a modified rat heart failure model after only transient coronary occlusion followed by long-term reperfusion. Freshly isolated cardiomyocytes were used to investigate cell-type specific mechanisms of lixisenatide action. RESULTS: In the acute setting of ischemia-reperfusion, lixisenatide reduced the infarct-size/area at risk by 36% ratio without changes on coronary flow, left-ventricular pressure and heart rate. Treatment with lixisenatide for 10 weeks, starting after cardiac ischemia and reperfusion, improved left ventricular end-diastolic pressure and relaxation time and prevented lung congestion in comparison to placebo. No anti-fibrotic effect was observed. Gene expression analysis revealed a change in remodeling genes comparable to the ACE inhibitor ramipril. In isolated cardiomyocytes lixisenatide reduced apoptosis and increased fractional shortening. Glucagon-like peptide-1 receptor (GLP1R) mRNA expression could not be detected in rat heart samples or isolated cardiomyocytes. Surprisingly, cardiomyocytes isolated from GLP-1 receptor knockout mice still responded to lixisenatide. CONCLUSIONS: In rodent models, lixisenatide reduced in an acute setting infarct-size and improved cardiac function when administered long-term after ischemia-reperfusion injury. GLP-1 receptor independent mechanisms contribute to the described cardioprotective effect of lixisenatide. Based in part on these preclinical findings patients with cardiac dysfunction are currently being recruited for a randomized, double-blind, placebo-controlled, multicenter study with lixisenatide. TRIAL REGISTRATION: (ELIXA, ClinicalTrials.gov Identifier: NCT01147250).


Asunto(s)
Cardiotónicos/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Péptidos/farmacología , Androstadienos/farmacología , Animales , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón , Insuficiencia Cardíaca/tratamiento farmacológico , Masculino , Ratones , Ratones Noqueados , Contracción Miocárdica/efectos de los fármacos , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Glucagón/metabolismo , Daño por Reperfusión/metabolismo , Transducción de Señal , Wortmanina
15.
J Transl Med ; 10: 187, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22963383

RESUMEN

BACKGROUND: The additive effects of obesity and metabolic syndrome on left ventricular (LV) maladaptive remodeling and function in hypertension are not characterized. METHODS: We compared an obese spontaneously hypertensive rat model (SHR-ob) with lean spontaneously hypertensive rats (SHR-lean) and normotensive controls (Ctr). LV-function was investigated by cardiac magnetic resonance imaging and invasive LV-pressure measurements. LV-interstitial fibrosis was quantified and protein levels of phospholamban (PLB), Serca2a and glucose transporters (GLUT1 and GLUT4) were determined by immunohistochemistry. RESULTS: Systolic blood pressure was similar in SHR-lean and SHR-ob (252 ± 7 vs. 242 ± 7 mmHg, p = 0.398) but was higher when compared to Ctr (155 ± 2 mmHg, p < 0.01 for both). Compared to SHR-lean and Ctr, SHR-ob showed impaired glucose tolerance and increased body-weight. In SHR-ob, LV-ejection fraction was impaired vs. Ctr (46.2 ± 1.1 vs. 59.6 ± 1.9%, p = 0.007). LV-enddiastolic pressure was more increased in SHR-ob than in SHR-lean (21.5 ± 4.1 vs. 5.9 ± 0.81 mmHg, p = 0.0002) when compared to Ctr (4.3 ± 1.1 mmHg, p < 0.0001 for both), respectively. Increased LV-fibrosis together with increased myocyte diameters and ANF gene expression in SHR-ob were associated with increased GLUT1-protein levels in SHR-ob suggestive for an upregulation of the GLUT1/ANF-axis. Serca2a-protein levels were decreased in SHR-lean but not altered in SHR-ob compared to Ctr. PLB-phosphorylation was not altered. CONCLUSION: In addition to hypertension alone, metabolic syndrome and obesity adds to the myocardial phenotype by aggravating diastolic dysfunction and a progression towards systolic dysfunction. SHR-ob may be a useful model to develop new interventional and pharmacological treatment strategies for hypertensive heart disease and metabolic disorders.


Asunto(s)
Obesidad/complicaciones , Disfunción Ventricular Izquierda/complicaciones , Remodelación Ventricular , Animales , Presión Sanguínea , Calcio/metabolismo , Perfilación de la Expresión Génica , Hemodinámica , Imagen por Resonancia Magnética , Masculino , Obesidad/fisiopatología , Ratas , Ratas Endogámicas SHR , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular/genética
16.
J Med Chem ; 55(17): 7636-49, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22861813

RESUMEN

Cathepsin A (CatA) is a serine carboxypeptidase distributed between lysosomes, cell membrane, and extracellular space. Several peptide hormones including bradykinin and angiotensin I have been described as substrates. Therefore, the inhibition of CatA has the potential for beneficial effects in cardiovascular diseases. Pharmacological inhibition of CatA by the natural product ebelactone B increased renal bradykinin levels and prevented the development of salt-induced hypertension. However, so far no small molecule inhibitors of CatA with oral bioavailability have been described to allow further pharmacological profiling. In our work we identified novel ß-amino acid derivatives as inhibitors of CatA after a HTS analysis based on a project adapted fragment approach. The new inhibitors showed beneficial ADME and pharmacokinetic profiles, and their binding modes were established by X-ray crystallography. Further investigations led to the identification of a hitherto unknown pathophysiological role of CatA in cardiac hypertrophy. One of our inhibitors is currently undergoing phase I clinical trials.


Asunto(s)
Aminoácidos/farmacología , Catepsina A/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Cristalografía por Rayos X , Modelos Moleculares
17.
Innate Immun ; 18(3): 541-59, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22042912

RESUMEN

This study was designed to test the responses of TLR2-knockout mice (TLR2-KO) and wild- type mice (C57/BL-6), and of CD36 deficient spontaneously hypertensive rats (SHR) and their genetic controls [Wistar Kyoto (WKY) rats] to systemic stimulations with the TLR2/6 agonist MALP-2 and the TLR4 agonist LPS. Fever and formation of TNF-α and IL-6 induced by intraperitoneal injections of MALP-2 (1000 µg/kg) were completely blunted in TLR2-KO, while LPS (100 µg/kg)-induced responses were not abolished in these animals. In SHR lacking CD36, a reduction of fever was observed in response to MALP-2 (100 µg/kg), but LPS-fever was even more attenuated in SHR when compared with WKY controls. Concentrations of circulating IL-6 tended to be lower in SHR after stimulation with both pyrogens. However, the IL-6-mediated activation of the transcription factor STAT3 in the brain was identical in both strains, indicating that the brain-controlled inflammatory response to MALP-2 (and LPS) is not impaired in the absence of CD36. In addition, stimulation of peritoneal macrophages with LPS and MALP-2 (10 µg/ml) caused the appearance of similar concentrations of bioactive cytokines in the supernatants from cells of both rat strains. These results demonstrate that TLR2 is essential for the manifestation of MALP-2, but not LPS-induced inflammatory responses. A moderate participation of CD36 in MALP-2-induced sickness- and cytokine-responses can not be ruled out but is unlikely as LPS-induced inflammatory responses were also attenuated in SHR.


Asunto(s)
Antígenos CD36/metabolismo , Fiebre/inmunología , Hipertensión/inmunología , Lipopéptidos/administración & dosificación , Receptor Toll-Like 2/agonistas , Animales , Antígenos CD36/genética , Células Cultivadas , Fiebre/inducido químicamente , Fiebre/genética , Hipertensión/inducido químicamente , Hipertensión/genética , Inmunización , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/agonistas , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
18.
Cytokine ; 56(3): 739-48, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22004922

RESUMEN

Parthenolide, a sesquiterpene lactone, has been reported to exhibit a variety of anti-inflammatory and immunomodulatory effects. To test the effect of parthenolide on brain inflammatory responses, brain oxidative stress and fever, we treated rats with parthenolide (1 mg/kg), simultaneously or 1 h prior to a systemic (i.p.) challenge with a moderate dose (100 µg/kg) of lipopolysaccharide (LPS). The initial hypothermia was exaggerated; the second phase of the biphasic LPS-induced fever and circulating interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) were significantly attenuated only in parthenolide-pretreated animals. In the hypothalamus, markers of NFκB/NF-IL6 pathway activation (inhibitor κBα, NF-IL6 and the serin/threonin kinase-like protein mRNA expression) and markers of oxidative stress (including nuclear respiratory factor 1) and NFκB immunoreactivity were significantly reduced while NF-IL6 immunoreactivity and suppressor of cytokine signaling 3 mRNA expression remained unaltered, 8 h after LPS-stimulation with parthenolide-pretreatment. Importantly, this response was accompanied by decreased mRNA expression of the rate limiting enzyme in prostaglandin synthesis, cyclooxygenase 2 (COX2), known for its critical role in fever induction pathways. A direct action of parthenolide on brain cells was also confirmed in a primary neuro-glial cell culture of the vascular organ of the lamina terminalis a pivotal brain structure for fever manifestation with a leaky blood-brain barrier. In summary, pretreatment with parthenolide attenuates the febrile response during LPS-induced systemic inflammation by reducing circulating IL-6 and TNFα and decreasing hypothalamic NFκB/NF-IL6 activation, oxidative stress and expression of COX2. Thus parthenolide appears to have the potential to reduce brain inflammation.


Asunto(s)
Citocinas/sangre , Encefalitis/sangre , Encefalitis/tratamiento farmacológico , Fiebre/sangre , Fiebre/tratamiento farmacológico , Sesquiterpenos/uso terapéutico , Animales , Biomarcadores/sangre , Temperatura Corporal/efectos de los fármacos , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Células Cultivadas , Encefalitis/complicaciones , Encefalitis/patología , Fiebre/inducido químicamente , Fiebre/complicaciones , Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/patología , Inyecciones Intraperitoneales , Interleucina-6/sangre , Lipopolisacáridos/administración & dosificación , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Sesquiterpenos/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/sangre
19.
Immunol Allergy Clin North Am ; 29(2): 229-45, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19389579

RESUMEN

After defining hyperthermia and fever, this article describes the complete chain of events leading to the genesis of fever, starting with the lipopolysaccharide-induced formation of endogenous pyrogens (cytokines), their interactions with relevant targets in the brain, the induction of enzymes responsible for the formation of prostaglandin E2, the activation of descending neuronal pathways via the EP3 receptor, and the stimulation of thermogenesis via this pathway to support the febrile shift of the thermoregulatory set point. This article also summarizes an alternative hypothesis to account for a rapid induction of the early phase of lipopolysaccharide-induced fever before the release of larger amounts of cytokines into the bloodstream. Other topics discussed include malignant hypothermia, drug-induced hypothermia, and the heat stroke syndrome.

20.
J Comp Neurol ; 511(3): 373-95, 2008 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-18803240

RESUMEN

This study aimed to address the relative contributions of the proinflammatory cytokine interleukin-6 (IL-6) and the cytokine-like hormone leptin to the genomic activation of brain cells during lipopolysaccharide (LPS)-induced systemic inflammation. Wildtype and IL-6KO mice were injected with LPS (50 microg/kg, intraperitoneally) and the brains analyzed by immunohistochemistry and reverse-transcriptase polymerase chain reaction (RT-PCR). LPS induced a pronounced nuclear translocation of the signal transducer and activator of transcription (STAT3) throughout the brains of wildtype mice, an effect that was significantly diminished, but not abolished, in the IL-6KOs. The remnant STAT3-activation, although still observed within some of the same areas activated by IL-6, was most intense in ependymal and meningial cells and along distinct blood vessels throughout the brain. This expression was almost totally abolished in the presence of an anti-leptin antiserum. Interestingly, the induction of cyclooxygenase 2 and microsomal prostaglandin E synthase (mPGES), the rate-limiting enzymes for synthesis of PGE2 by LPS, was diminished to a degree that correlated with the absence of IL-6 but not entirely with leptin. These results demonstrate that the induction of the inflammatory pathway in the brain is mediated by both IL-6 and leptin, which appear to work in tandem. Unlike IL-6, however, the contribution of leptin to this response was limited to distinct cell types/brain areas and STAT3-responsive target genes implicated in the brain-controlled sickness-type response. The physiological significance of leptin's action on meningeal and endothelial cells remains to be clarified but might reflect a role in LPS-induced immune cell infiltration into the brain.


Asunto(s)
Encéfalo , Inflamación/metabolismo , Interleucina-6/inmunología , Leptina/inmunología , Lipopolisacáridos , Animales , Encéfalo/anatomía & histología , Encéfalo/inmunología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidor NF-kappaB alfa , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...