Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.429
Filtrar
1.
J Clin Exp Hepatol ; 15(1): 102387, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39268481

RESUMEN

Background: Metabolic dysfunction-associated fatty liver disease has been linked to negative outcomes in patients with end-stage liver disease following liver transplantation. However, the influence of immunosuppressive regimens on it has not been explored. Methods: A retrospective analysis was conducted using the preoperative and postoperative data from patients with end-stage liver disease. The study compared three different groups: tacrolimus-based group, sirolimus-based group, and combined tacrolimus- and sirolimus-based regimens. Binary logistic regression analysis was employed to identify risk factors for metabolic dysfunction-associated fatty liver disease. Results: A total of 171 patients participated in the study, consisting of 127 males and 44 females, with a mean age of 49.6 years. The prevalence of posttransplant metabolic dysfunction-associated fatty liver disease was 29.23%. Among the three groups, there were 111 liver transplant recipients in the tacrolimus-based group, 28 in the sirolimus-based group, and 32 in the combination group. A statistically significant difference was observed in the incidence of metabolic dysfunction-associated fatty liver disease (P < 0.05), whereas the other preoperative and postoperative parameters showed no significant differences. Multivariate analysis revealed that a low-calorie diet (95% confidence intervals: 0.15-0.90, P = 0.021) and a combination of tacrolimus- and sirolimus-based immunosuppressive regimen (95% confidence intervals: 1.01-2.77, P = 0.046) were associated with lower risk of posttransplant metabolic dysfunction-associated fatty liver disease. Conclusions: Our study indicates that implementing a low-calorie diet and utilizing a combination of tacrolimus- and sirolimus-based immunosuppressive regimen can effectively lower the risk of posttransplant metabolic dysfunction-associated fatty liver disease following liver transplantation.

3.
Gen Hosp Psychiatry ; 91: 52-59, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39260191

RESUMEN

OBJECTIVE: This study aims to explore the independent and joint association of physical activity (PA) and inflammatory diet with cognitive function in aging. METHOD: Data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES) was used. 2249 NHANES participants with valid data represented a weighted population of 50.5 million American residents aged 60 and older. This study separately analyzed the independent associations of PA (measured by global physical activity questionnaire) and inflammatory diet (measured by energy-adjusted dietary inflammatory index from 24-h dietary recall), and their joints (inactive & pro-inflammatory as reference) with cognitive function (assessed by three cognitive tests), and considered an individual of different status and non-linear effect by sub-group and restricted cubic splines (RCS) analysis, respectively. All analysis was multivariable-adjusted and sample-weighted. RESULTS: The results showed that inflammatory diet was independently associated with lower cognitive function, with a 1.08, 1.29, 2.67, 0.56 lower score in the Registry for Alzheimer's Disease word list learning test (CERAD), the Animal Fluency Test (AFT), the Digit Symbol Substitution test (DSST), Z-scores, and 51 %, 62 %, 63 %, 93 % higher odds ratio (OR) of lower performance in CERAD, AFT, DSST, and p-MCI, respectively. PA was independently associated with higher cognitive function, with a 1.41, 3.37, and 0.52 higher score in AFT, DSST, Z-scores, and 28 %, 51 %, 41 % lower ORs of lower performance in CERAD and DSST and p-MCI, respectively. Active & Anti-inflammatory was always positively associated with cognitive function, with a 1.42, 2.69, 5.47, and 1.04 higher score for CERAD, AFT, DSST, and Z-score, a 58 %, 56 %, 74 %, 76 % lower ORs of lower performance in CERAT, AFT, DSST, and p-MCI, respectively, which elicited the maximum compared to other joints. CONCLUSION: Adhering to both active PA and anti-inflammatory diet is recommended for cognitive management in older adults. Sticking to either active PA or anti-inflammatory diet also shows potential cognitive benefits, with the diet possibly playing more vital role.

4.
J Agric Food Chem ; 72(37): 20622-20632, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225480

RESUMEN

The control of excess biogenic amines (BAs) is crucial for the sustainable development of fermented foods. This study aimed to screen endogenous functional strains in Doubanjiang with the capacity to degrade BAs and to elucidate their application potential. Pediococcus acidilactici L-9 (PA), which was confirmed as a safe strain by phenotypic and genotypic analyses, exhibited an efficient degradation ability on BAs, particularly regarding tyramine. Notably, the degradation of tyramine was maintained at 24.03-50.60% at different temperatures (20-40 °C), pH values (4.0-9.0), and NaCl concentrations (3-18%, w/v). Additionally, genomic data revealed the presence of the laccase-coding gene, which was demonstrated to play a pivotal role in BA degradation by heterologous expression. Further, molecular docking results indicated that the degradation of BA by laccase is closely linked to the electron transfer pathway formed by the substrate and key amino acid residues. Finally, the degradation of tyramine by PA remained within the range of 8.19-64.19% under the simulated system with 6-12% salinity. This study provided valuable insights into the safety of PA and its potential degradation capacity on BAs, particularly in mitigating tyramine accumulation, which could improve the quality of Doubanjiang and other fermented foods.


Asunto(s)
Aminas Biogénicas , Simulación del Acoplamiento Molecular , Pediococcus acidilactici , Tiramina , Aminas Biogénicas/metabolismo , Pediococcus acidilactici/metabolismo , Pediococcus acidilactici/genética , Pediococcus acidilactici/química , Tiramina/metabolismo , Tiramina/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Concentración de Iones de Hidrógeno , Lacasa/genética , Lacasa/metabolismo , Lacasa/química , China , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis
5.
Food Chem ; 463(Pt 1): 141076, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39243610

RESUMEN

This study utilized metabolomics and metagenomics to investigate the microbial composition and functions in low- and high-salt Chinese horse bean-chili pastes (CHCPs). The results showed that 25 key metabolites were identified to distinguish the flavor attributes between the two samples. Leuconostoc was identified as the dominant microbiota in low-salt CHCP, while Pantoea prevailed in the high-salt CHCP. Compared to traditional high-salt fermentation, low-salt and inoculated fermentation promoted the increase in the relative abundances of Companionlactobacillus, Levilactobacillus, Tetragenococcus, Zygosaccharomyces and Wickerhamiella as well as the enrichment of carbohydrate and amino acid metabolic pathways, which contributed to the enhancement of characteristic flavor compounds. Further metabolic pathway reconstruction elucidated 21 potential microbial genera associated with the formation of key metabolites, such as Leuconostoc, Levilactobacillus, Pantoea, and Pectobacterium. This study may provide insights for optimizing the fermentation process and improving the flavor quality of low-salt CHCP and similar fermentation products. KEYWORDS: Low-salt fermentation Hight-salt fermentation Chinese horse-bean chili paste Flavor formation Metabolomics Metagenomics.

6.
Heliyon ; 10(16): e35872, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220976

RESUMEN

Flight safety in helicopters is a critical aspect of overall aircraft operational safety management, particularly during engine failures requiring autorotative glide, which makes it extremely challenging for the pilot to land the helicopter successfully. In this study, we evaluated the workload and attention allocation of helicopter pilots under such circumstances. In the experiment, a helicopter flight simulator was used to simulate level flight followed by autorotative glide, with the two phases divided into time segments for data collection. First, the data were visualized using heat maps and saccade sequence diagrams, while changes in eye movement metrics (such as peak value and standard deviation) were statistically analyzed. Finally, the criteria through the inter-criteria correlation (CRITIC) method was used to calculate the weight coefficient for each area of interest. This evaluation system was further applied to analyze and compare the changes in eye-movement data and attention to areas of interest during the two phases. The results revealed a shorter fixation duration, but a greater fixation number during the autorotative glide phase. Further, the mean pupil diameter changed over a larger range than during level flight (in level flight, the mean was 5.229 mm, while the standard deviation was 0.059 mm; in autorotative glide the corresponding values were 5.326 mm and 0.126 mm, respectively). For the tachometer, the weight coefficient matched the color of the heat map (2.7 % and colorless during level flight, but 23.8 % and red during autorotative glide), while those for the airspeed indicator and forward view differed significantly between the two phases. This discrepancy stemmed from the fact that during autorotative glide, the pilots prioritized monitoring aircraft rotation speed and attitude, with a particular focus on the forward view, rotor speed, and airspeed, resulting in a more concentrated attention distribution compared to that achieved during level flight. These results confirmed a significant increase in pilot workload during autorotative glide landing, while a shift was observed from low-frequency long gaze time during level flight to high-frequency short gaze time during autorotative glide. Furthermore, the pilots allocated 81 % of their attention to the tachometer, airspeed indicator, and forward views. Adopting this strategy can improve pilots' landing success and provide flight students with valuable training advice to prevent landing failures when helicopters lose power.

7.
Compr Rev Food Sci Food Saf ; 23(5): e70000, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39217507

RESUMEN

Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.


Asunto(s)
Contaminación de Alimentos , Nitrosaminas , Nitrosaminas/química , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Humanos , Inocuidad de los Alimentos/métodos , Extracción en Fase Sólida/métodos , Análisis de los Alimentos/métodos
8.
J Am Nutr Assoc ; : 1-11, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230430

RESUMEN

OBJECTIVE: This study aims to investigate the association between central obesity and the risk of osteoarthritis, and the mediating role of biological age and biological aging advance in this relationship. METHODS: The study is based on data from the National Health and Nutrition Examination Survey (NHANES) for the years 2005-2018. Thirteen commonly used clinical traits were used to calculate the Klemera-Doubal method age (KDM-Age) and phenotypic age (Pheno-Age) as two measures of biological aging. Additionally, KDM-Age advance and Pheno-Age advance were calculated as two measures of biological aging advance. Weighted multivariable logistic regression was used to analyze the association between central obesity and the risk of osteoarthritis (OA). Mediation analysis was then applied to elucidate the role of biological aging and biological aging advance in this relationship. RESULTS: A total of 31,162 subjects aged ≥20 years were included in this study, of which 3,964 subjects reported having OA (14%). Compared to the Non-OA group, the OA group showed significantly higher proportions of central obesity, KDM-Age, KDM-Age advance, PhenoAge, and PhenoAge advance. Compared to the Non-central obesity group, the central obesity group had higher KDM-Age, KDM-Age advance, PhenoAge, PhenoAge advance, and a higher risk of OA (p < 0.05). Additionally, higher KDM-Age, KDM-Age advance, PhenoAge, and PhenoAge advance were positively correlated with the risk of OA (p < 0.05). Mediation analysis revealed that part of the association between central obesity and the risk of OA was mediated by KDM-Age, KDM-Age advance, PhenoAge, and PhenoAge advance (p < 0.05). CONCLUSION: Central obesity increases the risk of OA, with part of this association being mediated by biological aging and biological aging advance.

9.
Front Med (Lausanne) ; 11: 1433846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206165

RESUMEN

Objective: The study aimed to explore the relationship between systemic inflammatory response index (SIRI) levels and osteoarthritis (OA) using cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) database from 2005 to 2018. Methods: Using cross-sectional data from the NHANES database from 2005 to 2018, we included 11,381 study participants divided into OA (n = 1,437) and non-OA (n = 9,944) groups. Weighted multivariable regression models and subgroup analyses were employed to investigate the relationship between SIRI and OA. Additionally, restricted cubic spline models were used to explore nonlinear relationships. Results: This study enrolled 11,381 participants aged ≥20 years, including 1,437 (14%) with OA. Weighted multivariable regression analysis in the fully adjusted Model 3 indicated a correlation between higher levels of SIRI (log2-transformed) and an increased OA risk (odds ratio: 1.150; 95% confidence interval: 1.000-1.323, p < 0.05). Interaction tests showed that the variables did not significantly affect this correlation (p for interaction all >0.05). Additionally, a restricted cubic spline model revealed a nonlinear relationship between log2(SIRI) and OA risk, with a threshold effect showing 4.757 as the critical value of SIRI. SIRI <4.757 showed almost unchanged OA risk, whereas SIRI >4.757 showed rapidly increasing OA risk. Conclusion: The positive correlation between SIRI and OA risk, with a critical value of 4.757, holds clinical value in practical applications. Additionally, our study indicates that SIRI is a novel, clinically valuable, and convenient inflammatory biomarker that can be used to predict OA risk in adults.

10.
Chem Commun (Camb) ; 60(71): 9574-9577, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39140127

RESUMEN

Herein, a hollow spherical pillar[5]arene-based polymer (P5-AO) adsorbent was synthesized. The P5-AO adsorbent was capable of effectively capturing uranium from simulated seawater (139.5 mg g-1) and real seawater (8.1 mg g-1). We also elucidated the uranium adsorption mechanism of P5-AOvia extended X-ray absorption fine structure (EXAFS). This study provides a novel direction for the development of uranium capture adsorbents.

11.
Clin Ther ; 46(9): 702-710, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39112102

RESUMEN

PURPOSE: Sodium zirconium cyclosilicate (SZC) is an oral potassium (K+)-lowering therapy for adults with hyperkalemia. HARMONIZE Asia (ClinicalTrials.gov identifier: NCT03528681) evaluated the efficacy and safety of SZC in Chinese patients with hyperkalemia. METHODS: This Phase III, randomized, double-blind, placebo-controlled study recruited patients with serum K+ (sK+) ≥5.1 mmol/L at 35 sites in China. Patients received SZC 10 g three times daily (TID) for 24 or 48 hours during an open-label initial phase (OLP). Those patients achieving normokalemia (sK+ 3.5-5.0 mmol/L inclusive) entered a 28-day randomized (2:2:1) treatment phase (RTP) and received SZC 5 g, SZC 10 g, or placebo once daily. The primary endpoint was mean sK+ during RTP Days 8 to 29. Secondary endpoints included mean change in sK+ during the OLP, the proportion of patients who achieved normokalemia at the end of the OLP, the proportion that maintained normokalemia during the RTP, and time to recurrence of hyperkalemia. FINDINGS: In total, 270 patients received SZC 10 g TID during the OLP; 256 (94.8%) completed the OLP. During the OLP, mean sK+ decreased by 1.1 mmol/L from baseline (5.9 mmol/L; P < 0.001) and 87.4% of patients achieved normokalemia. During the RTP, SZC 5 g and 10 g reduced mean sK+ versus placebo in a dose-dependent manner (each P < 0.001); least-squares means (95% confidence interval [CI]) sK+ were 4.9 mmol/L (4.7, 5.0), 4.4 mmol/L (4.3, 4.6), and 5.2 mmol/L (5.1, 5.4) for SZC 5 g, 10 g, and placebo, respectively. At RTP end, the proportions of patients who maintained normokalemia were 58.8% (SZC 5 g; odds ratio vs placebo, 2.5 [95% CI: 1.1, 6.1; P = 0.035]), 76.5% (SZC 10 g; odds ratio vs placebo, 6.3 [95% CI: 2.6, 15.3; P < 0.001]), and 36.8% for placebo. Risk of recurrent hyperkalemia was reduced by 61.0% and 84.0% with SZC 5 g and SZC 10 g, respectively, versus placebo (each P < 0.001). During the RTP, the incidence of adverse events was numerically higher with SZC 5 g (50.0% of patients) and 10 g (44.0%) versus placebo (36.0%); driven primarily by peripheral edema and constipation. IMPLICATIONS: Both SZC doses demonstrated clinically relevant and statistically significant, dose-dependent efficacy in managing sK+ levels in Chinese patients with hyperkalemia, compared with placebo. SZC tolerability was broadly aligned with the known safety profile of SZC.


Asunto(s)
Hiperpotasemia , Silicatos , Humanos , Hiperpotasemia/tratamiento farmacológico , Silicatos/efectos adversos , Silicatos/uso terapéutico , Silicatos/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Método Doble Ciego , China , Anciano , Adulto , Resultado del Tratamiento , Potasio/sangre
12.
ACS Nano ; 18(35): 24024-24034, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39167054

RESUMEN

In recent years, there has been considerable push toward the biomedical applications with active particles, which have great potential to revolutionize disease diagnostics and therapy. The direct penetration of active particles through the cell membrane leads to more efficient intracellular delivery than previously considered endocytosis processes but may cause membrane disruption. Understanding fundamental behaviors of cell membranes in response to such extreme impacts by active particles is crucial to develop active particle-based biomedical technologies and manage health and safety issues in this emerging field. Unfortunately, the physical principles underlying the nonequilibrium behaviors from endocytosis to direct penetration remain elusive, and experiments are challenging. Here, we present a computed dynamic phase diagram for transmembrane transport of active particles and identify four characteristic dynamic phases in endocytosis and direct penetration according to the particle activity and membrane tension. The boundaries dividing these phases are analytically obtained with theoretical models, elucidating the nonequilibrium physics and criteria for the transition between different phases. Furthermore, we numerically and experimentally show three distinct dynamic regimes related to the interplay between necking and wrapping during the endocytosis process of active particles, which strikingly contrast the regimes for passive particles. Overall, these findings could be useful for sharpening the understanding of basic principles underlying biological issues related to the safe and efficient biomedical applications of such emerging matters.


Asunto(s)
Membrana Celular , Endocitosis , Membrana Celular/metabolismo , Membrana Celular/química , Transporte Biológico , Humanos , Modelos Biológicos , Tamaño de la Partícula
13.
Foods ; 13(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39200490

RESUMEN

High-value resources beyond oil extraction for the olive industry need to be developed due to increased olive production. Soluble dietary fibers (SDFs) and olive proteins (OPIs) are important components of olives. However, the commercial production process partially damages OPIs' emulsifying and foaming properties. Thus, the preparation of SDF-OPI complexes would help protect and even improve the emulsifying and foaming properties. The effects of pH and thermal-ultrasonic treatment on the complexation were explored, which showed that the SDF-OPI complexes prepared at pH 5 exhibited superior solubility (p < 0.05). SDF addition noticeably improved OPI thermal stability, emulsifying properties, and foaming properties. Moreover, the complexes prepared by thermal-ultrasonic treatment exhibited higher emulsion stability and lower emulsification activity than those prepared without thermal-ultrasonic treatment. In the acidic system, the electrostatic interaction was considered the main driving factor, assisted by the hydrophobic interaction. Additionally, after thermal-ultrasonic treatment, the covalent binding was observed by infrared spectroscopy. These results revealed the interaction mechanism between SDF and OPI, and the complexes significantly enhanced the functional properties of OPI. This study provides a reference for the high-value utilization of olives, thus broadening their potential uses in the food sector and beyond.

14.
Front Cardiovasc Med ; 11: 1459062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149583

RESUMEN

Background: The arteriosclerosis index, defined as the ratio of non-high density lipoprotein cholesterol to high density lipoprotein cholesterol (NHHR), has emerged as a novel biomarker for various diseases. The relationship between NHHR and lumbar bone mineral density (BMD) has not been previously examined. Methods: This cross-sectional study analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. NHHR was calculated as (total cholesterol-high-density lipoprotein cholesterol)/high-density lipoprotein cholesterol. Lumbar BMD was calculated to Z scores. Weighted multivariate linear regression, subgroup analysis, interaction analysis, generalized additive model, and two-piecewise linear regression were used. Results: A total of 8,602 participants were included. The negative association between NHHR and lumbar BMD was consistent and significant (Model 1: ß = -0.039, 95% CI: -0.055, -0.023, p < 0.001; Model 2: ß = -0.045, 95% CI: -0.062, -0.027, p < 0.001; Model 3: ß = -0.042, 95% CI: -0.061, -0.023, p < 0.001). The linear relationship between NHHR and lumbar BMD was significantly influenced by body mass index (p for interaction = 0.012) and hypertension (p for interaction = 0.047). Non-linear associations between NHHR and lumbar BMD Z scores were observed in specific populations, including U-shaped, reverse U-shaped, L-shaped, reverse L-shaped, and U-shaped relationships among menopausal females, underweight participants, those with impaired glucose tolerance, those with diabetes mellitus and those taking anti-hyperlipidemic drugs, respectively. Conclusions: NHHR exhibited a negative association with lumbar BMD, but varying across specific populations. These findings suggest that NHHR should be tailored to individual levels to mitigate bone loss through a personalized approach. Individuals at heightened risk of cardiovascular disease should focus on their bone health.

15.
Nat Commun ; 15(1): 7056, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147776

RESUMEN

The emulation of tactile sensory nerves to achieve advanced sensory functions in robotics with artificial intelligence is of great interest. However, such devices remain bulky and lack reliable competence to functionalize further synaptic devices with proprioceptive feedback. Here, we report an artificial organic afferent nerve with low operating bias (-0.6 V) achieved by integrating a pressure-activated organic electrochemical synaptic transistor and artificial mechanoreceptors. The dendritic integration function for neurorobotics is achieved to perceive directional movement of object, further reducing the control complexity by exploiting the distributed and parallel networks. An intelligent robot assembled with artificial afferent nerve, coupled with a closed-loop feedback program is demonstrated to rapidly implement slip recognition and prevention actions upon occurrence of object slippage. The spatiotemporal features of tactile patterns are well differentiated with a high recognition accuracy after processing spike-encoded signals with deep learning model. This work represents a breakthrough in mimicking synaptic behaviors, which is essential for next-generation intelligent neurorobotics and low-power biomimetic electronics.


Asunto(s)
Mecanorreceptores , Robótica , Tacto , Robótica/instrumentación , Robótica/métodos , Tacto/fisiología , Mecanorreceptores/fisiología , Inteligencia Artificial , Transistores Electrónicos , Biomimética/instrumentación , Biomimética/métodos , Humanos , Aprendizaje Profundo , Retroalimentación Sensorial/fisiología , Neuronas Aferentes/fisiología
17.
Water Res ; 266: 122337, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216130

RESUMEN

Optimizing nitrogen removal is crucial for ensuring the efficient operation of wastewater treatment plants (WWTPs), but it is susceptible to variations in influent conditions and operational parameter constraints, and conflicts with the energy-saving and carbon emission reduction goals. To address these issues, this study proposes a hybrid framework integrating process simulation, machine learning, and multi-objective genetic algorithms for nitrogen removal diagnosis and optimization, aiming to predict the total nitrogen in effluent, diagnose nitrogen over-limit risks, and optimize the control strategies. Taking a full-scale WWTP as a case study, a process time-lag simulation-enhanced machine learning model (PTLS-ML) was developed, achieving R2 values of 0.94 and 0.79 for the training and testing sets, respectively. The proposed model successfully identified the potential reasons of nitrogen over-limit risks under different influent conditions and operational parameters, and accordingly provided optimization suggestions. In addition, the multi-objective optimization (MOO) algorithms analysis further demonstrated that maintaining 4-6 mg/L total nitrogen concentration in effluent by adjusting process operational parameters can effectively balance multiple objectives (i.e., effluent water quality, operating costs, and greenhouse gas emissions), achieving coordinated optimization. This framework can serve as a reference for stable operation, energy-saving, and emission reduction in the nitrogen removal of WWTPs.

18.
Adv Mater ; 36(36): e2405556, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39021303

RESUMEN

The development of soft and flexible devices for collection of bioelectrical signals is gaining momentum for wearable and implantable applications. Among these devices, organic electrochemical transistors (OECTs) stand out due to their low operating voltage and large signal amplification capable of transducing weak biological signals. While liquid electrolytes have demonstrated efficacy in OECTs, they limit its operating temperature and pose challenges for electronic packaging due to potential leakage. Conversely, solid electrolytes offer advantages such as mechanical flexibility, robustness against environmental factors, and ability to bridge the interface between rigid dry electronics systems and soft wet biological tissues. However, few systems have demonstrated generality and compatibility with a wide range of state-of-the-art organic mixed ionic-electronic conductors (OMIECs). This paper introduces a highly stretchable, flexible, biocompatible, self-healable gelatin-based solid-state electrolyte, compatible with both p- and n-type OMIEC channels while maintaining high performance and excellent stability. Furthermore, this nonvolatile electrolyte is stable up to 120 °C and exhibits high ionic conductivity even in dry environment. Additionally, an OECT-based complementary inverter with a record-high normalized-gain of 228 V-1 and a corresponding ultralow static power consumption of 1 nW is demonstrated. These advancements pave the way for versatile applications ranging from bioelectronics to power-efficient implants.

19.
Int J Biol Macromol ; 276(Pt 2): 133939, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029827

RESUMEN

Pea protein isolate (PPI) was used as a carrier matrix to load tannic acid (TA) due to its multiple cavity structures and reaction sites, after that, magnesium ion (M) was further added to form more stable carrier structures. PPI was covalently bound with TA to form TA-PPI complexes in alkaline conditions, then M induced the aggregation of TA-PPI to produce M-TA-PPI complexes. TA mainly interacted with free amino groups and sulfhydryl groups of PPI, thereby decreasing their content in complexes. TA further decreased the α-helix content and increased the ß-sheet and ß-turn content in TA-PPI complexes correspondingly, nevertheless the M would decline these changes in M-TA-PPI complexes. As a result of binding, TA and M jointly increased the average molecular size of complexes. The higher TA addition amount (10-20 mg/g PPI) was conducive to the stronger intramolecular interactions (more hydrophobic interactions and disulfide bonds), gel structure (higher hardness value) and storage modulus in M-TA-PPI gels. Compared with TA-PPI complexes, M-TA-PPI complexes showed higher stability in gastric digestion and higher TA releasement and antioxidant capacity of its digesta in intestinal digestion. This kind of metal-phenolics-protein complexes may have potentials to be a stable and efficient carrier for loading gastric sensitive polyphenols.


Asunto(s)
Magnesio , Proteínas de Guisantes , Polifenoles , Antioxidantes/química , Sustancias Macromoleculares/química , Magnesio/química , Proteínas de Guisantes/química , Proteínas de Guisantes/aislamiento & purificación , Pisum sativum/química , Polifenoles/química
20.
BMC Public Health ; 24(1): 1754, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956531

RESUMEN

BACKGROUND: This study aimed to investigate the relationships between accelerometer-measured physical activity (PA) and sedentary behaviour (SB) with physical function (PF) among older Chinese women in the community. METHODS: The present study comprised 1,113 community-dwelling older females, with an average age of 65 ± 2 years. We employed a linear regression analysis to investigate the relationship between patterns of PA and SB with PF. PA variables consisted of total PA time, bouted PA time (a continuous PA that lasts equal to or more than 10 min), and sporadic PA time (a continuous PA that lasts less than 10 min). SB variables included total SB time, 30-min bout of SB (a continuous SB that lasts equal to or more than 30 min), and 60-min bout of SB (a continuous SB that lasts equal to or more than 60 min). PF variables comprised handgrip strength (HGS), one-legged stance test with eyes closed (OLSTEC), usual walking speed (UWS), maximum walking speed (MWS) and chair-stand time (CT). To explore the joint effects of moderate-to-vigorous-intensity PA (MVPA) and SB on PF, we divided the duration of SB and MVPA participation in older women into different combinations: low MVPA & high SB, low MVPA & low SB, high MVPA & high SB, high MVPA & low SB. RESULTS: The study revealed a significant association between 30-min bout of SB and CT, which remained after adjusting for total MVPA time (P = 0.021). Both total MVPA and bouted MVPA were found to be positively associated with better UWS, MWS, CT, and PF Z-score. When the combination of low MVPA & high SB was used as a reference, the regression coefficients for PF ascended by 1.32 (P < 0.001) in the high MVPA & high SB group and by 1.13 (P < 0.001) in the high MVPA & low SB group. CONCLUSIONS: A significant association was observed between poorer lower limb function and prolonged, uninterrupted SB in older women, rather than with the total SB time. Concurrently, the insufficient engagement in MVPA may also be a crucial factor contributing to poorer PF in older women. Engaging in longer durations and higher intensity of PA, such as bouts of MVPA lasting a minimum of 10 min or longer, may contribute to better PF.


Asunto(s)
Acelerometría , Ejercicio Físico , Conducta Sedentaria , Humanos , Femenino , Estudios Transversales , Anciano , Ejercicio Físico/fisiología , Persona de Mediana Edad , Vida Independiente , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA