Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 236: 119955, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37087918

RESUMEN

In the present study, a single-well push-pull (SWPP) test was conducted with multi-component tracers, including inert gas (SF6 and Kr) and uranine (conservative), to understand the volatile/semi-volatile component transport characteristics in the groundwater system. In an SWPP test, it is essential to obtain an initial breakthrough curve (BTC) of the inert gas concentration at the beginning of the pulling stage to analyze the hydraulic properties of the groundwater system. As a result of the SWPP test using a proposed method in this study, physicochemical parameters of the groundwater and BTC of gas tracers and uranine were acquired simultaneously and successfully. In addition, on-site measurements of uranine, pCO2, and water quality data, such as electrical conductivity (EC), temperature, pH, and dissolved oxygen, were undertaken. Modification of an existing pCO2 measuring system allowed the gas samples to be collected, transported, and analyzed for inert gas components within a few hours. As a result, reliable and interpretable data with a recovery ratio of 26%, 85%, and 95% for SF6, Kr, and uranine, respectively, were obtained. The differences in the recovery ratio were utilized to identify the environmental system, whether it contains gas inside the isolated system (closed) or not (open), and to understand plume behavior characteristics in the experimental zone. By applying a two-dimensional advection-dispersion model to the acquired tracer test data and comparing the observed and computed tracer concentrations, helpful information was obtained on the hydraulic and transport characteristics of the targeted zone. This method can be extended to the design of dissolved CO2 transport monitoring of an aquifer above a CCS site.


Asunto(s)
Agua Subterránea , Fluoresceína
2.
Sci Total Environ ; 824: 153835, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176379

RESUMEN

Geological storage of carbon dioxide (CO2) is an integral component of cost-effective greenhouse gas emissions reduction scenarios. However, a robust monitoring regime is necessary for public and regulatory assurance that any leakage from a storage site can be detected. Here, we present the results from a controlled CO2 release experiment undertaken at the K-COSEM test site (South Korea) with the aim of demonstrating the effectiveness of the inherent tracer fingerprints (noble gases, δ13C) in monitoring CO2 leakage. Following injection of 396 kg CO2(g) into a shallow aquifer, gas release was monitored for 2 months in gas/water phases in and above the injection zone. The injection event resulted in negative concentration changes of the dissolved gases, attributed to the stripping action of the depleted CO2. Measured fingerprints from inherent noble gases successfully identified solubility-trapping of the injected CO2 within the shallow aquifer. The δ13C within the shallow aquifer could not resolve the level of gas trapping, due to the interaction with heterogeneous carbonate sources in the shallow aquifer. The time-series monitoring of δ13CDIC and dissolved gases detected the stripping action of injected CO2(g), which can provide an early warning of CO2 arrival. This study highlights that inherent noble gases can effectively trace the upwardly migrating and fate of CO2 within a shallow aquifer.


Asunto(s)
Dióxido de Carbono , Agua Subterránea , Preparaciones de Acción Retardada , Gases , Gases Nobles
3.
J Biol Chem ; 291(18): 9827-34, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26961882

RESUMEN

Nascent polypeptides are degraded by the proteasome concurrently with their synthesis on the ribosome. This process, called cotranslational protein degradation (CTPD), has been observed for years, but the underlying mechanisms remain poorly understood. Equally unclear are the identities of cellular proteins genuinely subjected to CTPD. Here we report the identification of CTPD substrates in the yeast Saccharomyces cerevisiae via a quantitative proteomic analysis. We compared the abundance of individual ribosome-bound nascent chains between a wild type strain and a mutant defective in CTPD. Of 1,422 proteins acquired from the proteomic analysis, 289 species are efficient CTPD substrates, with >30% of their nascent chains degraded cotranslationally. We found that proteins involved in translation, ribosome biogenesis, nuclear transport, and amino acid metabolism are more likely to be targeted for CTPD. There is a strong correlation between CTPD and the translation efficiency. CTPD occurs preferentially to rapidly translated polypeptides. CTPD is also influenced by the protein sequence length; longer polypeptides are more susceptible to CTPD. In addition, proteins with N-terminal disorder have a higher probability of being degraded cotranslationally. Interestingly, the CTPD efficiency is not related to the half-lives of mature proteins. These results for the first time indicate an inverse correlation between CTPD and cotranslational folding on a proteome scale. The implications of this study with respect to the physiological significance of CTPD are discussed.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Pliegue de Proteína , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Oncotarget ; 5(8): 2044-51, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24810856

RESUMEN

gp78 is a ubiquitin ligase that plays a vital role in endoplasmic reticulum (ER)-associated degradation (ERAD). Here we report that autocrine motility factor (AMF), also known as phosphoglucose isomerase (PGI), is a novel substrate of gp78. We show that polyubiquitylation of AMF requires cooperative interaction between gp78 and the ubiquitin ligase TRIM25 (tripartite motif-containing protein 25). While TRIM25 mediates the initial round of ubiquitylation, gp78 catalyzes polyubiquitylation of AMF. The E4-like activity of gp78 was illustrated by an in vitro polyubiquitylation assay using Ub-DHFR as a model substrate. We further demonstrate that TRIM25 ubiquitylates gp78 and that overexpression of TRIM25 accelerates the degradation of gp78. Our data suggest that TRIM25 not only cooperates with gp78 in polyubiquitylation of AMF but also gauges the steady-state level of gp78. This study uncovers a previously unknown functional link between gp78 and TRIM25 and provides mechanistic insight into gp78-mediated protein ubiquitylation.


Asunto(s)
Glucosa-6-Fosfato Isomerasa/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Proteínas de Motivos Tripartitos , Ubiquitinación
5.
Cancer Res ; 74(8): 2229-37, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24576828

RESUMEN

Autocrine motility factor (AMF) enhances invasion by breast cancer cells, but how its secretion and effector signaling are controlled in the tumor microenvironment is not fully understood. In this study, we investigated these issues with a chimeric AMF that is secreted at high levels through a canonical endoplasmic reticulum (ER)/Golgi pathway. Using this tool, we found that AMF enhances tumor cell motility by activating AKT/ERK, altering actin organization, and stimulating ß-catenin/TCF and activating protein 1 transcription. EGF enhanced secretion of AMF through its casein kinase II-mediated phosphorylation. RNA interference-mediated attenuation of AMF expression inhibited EGF-induced invasion by suppressing extracellular signal-regulated kinase signaling. Conversely, exogenous AMF overcame the inhibitory effect of EGF receptor inhibitor gefitinib on invasive motility by activating HER2 signaling. Taken together, our findings show how AMF modulates EGF-induced invasion while affecting acquired resistance to cytotoxic drugs in the tumor microenvironment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Línea Celular Tumoral , Sistema Enzimático del Citocromo P-450/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción AP-1/metabolismo , Transfección , Microambiente Tumoral , beta Catenina/metabolismo
6.
J Biol Chem ; 289(5): 2701-10, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24338021

RESUMEN

Cotranslational protein degradation plays an important role in protein quality control and proteostasis. Although ubiquitylation has been suggested to signal cotranslational degradation of nascent polypeptides, cotranslational ubiquitylation occurs at a low level, suggesting the existence of an alternative route for delivery of nascent polypeptides to the proteasome. Here we report that the nuclear import factor Srp1 (also known as importin α or karyopherin α) is required for ubiquitin-independent cotranslational degradation of the transcription factor Rpn4. We further demonstrate that cotranslational protein degradation is generally impaired in the srp1-49 mutant. Srp1 binds nascent polypeptides emerging from the ribosome. The association of proteasomes with polysomes is weakened in srp1-49. The interaction between Srp1 and the proteasome is mediated by Sts1, a multicopy suppressor of srp1-49. The srp1-49 and sts1-2 mutants are hypersensitive to stressors that promote protein misfolding, underscoring the physiological function of Srp1 and Sts1 in degradation of misfolded nascent polypeptides. This study unveils a previously unknown role for Srp1 and Sts1 in cotranslational protein degradation and suggests a novel model whereby Srp1 and Sts1 cooperate to couple proteasomes to ribosome-bound nascent polypeptides.


Asunto(s)
Carioferinas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Homeostasis , Carioferinas/química , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitinación
7.
Toxicol Lett ; 211(1): 29-38, 2012 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-22414386

RESUMEN

Endoplasmic reticulum (ER) stress refers to a condition of accumulation of unfolded or misfolded proteins in the ER lumen, which is known to activate an intracellular stress signaling termed Unfolded Protein Response (UPR). A number of pharmacologic reagents or pathophysiologic stimuli can induce ER stress and activation of the UPR signaling, leading to alteration of cell physiology that is associated with the initiation and progression of a variety of diseases. Non-alcoholic steatohepatitis (NASH), characterized by hepatic steatosis and inflammation, has been considered the precursor or the hepatic manifestation of metabolic disease. In this study, we delineated the toxic effect and molecular basis by which pharmacologic ER stress, induced by a bacterial nucleoside antibiotic tunicamycin (TM), promotes NASH in an animal model. Mice of C57BL/6J strain background were challenged with pharmacologic ER stress by intraperitoneal injection of TM. Upon TM injection, mice exhibited a quick NASH state characterized by hepatic steatosis and inflammation. An increase in hepatic triglycerides (TG) and a decrease in plasma lipids, including plasma TG, plasma cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL), were observed in the TM-treated mice. In response to TM challenge, cleavage of sterol responsive binding protein (SREBP)-1a and SREBP-1c, the key trans-activators for lipid and sterol biosynthesis, was dramatically increased in the liver. Consistent with the hepatic steatosis phenotype, expression of some key regulators and enzymes in de novo lipogenesis and lipid droplet formation was up-regulated, while expression of those involved in lipolysis and fatty acid oxidation was down-regulated in the liver of mice challenged with TM. Moreover, TM treatment significantly increased phosphorylation of NF-κB inhibitors (IκB), leading to the activation of NF-κB-mediated inflammatory pathway in the liver. Our study not only confirmed that pharmacologic ER stress is a strong "hit" that triggers NASH, but also demonstrated crucial molecular links between ER stress, lipid metabolism, and inflammation in the liver in vivo.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Hígado Graso/inducido químicamente , Animales , Colesterol/sangre , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/fisiología , Hígado Graso/sangre , Hígado Graso/patología , Lipoproteínas HDL/sangre , Lipoproteínas LDL/sangre , Hígado/química , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Reacción en Cadena en Tiempo Real de la Polimerasa , Triglicéridos/análisis , Tunicamicina/farmacología
8.
Biochem Biophys Res Commun ; 419(2): 226-31, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22349505

RESUMEN

The number of proteasomal substrates that are degraded without prior ubiquitylation continues to grow. However, it remains poorly understood how the proteasome recognizes substrates lacking a ubiquitin (Ub) signal. Here we demonstrated that the Ub-independent degradation of Rpn4 requires the 19S regulatory particle (RP). The Ub-independent degron of Rpn4 was mapped to an N-terminal region including the first 80 residues. Inspection of its amino acid sequence revealed that the Ub-independent degron of Rpn4 consists of an intrinsically disordered domain followed by a folded segment. Using a photo-crosslinking-label transfer method, we captured three 19S RP subunits (Rpt1, Rpn2 and Rpn5) that bind the Ub-independent degron of Rpn4. This is the first time that specific 19S RP subunits have been identified interacting with a Ub-independent degron. This study provides insight into the mechanism by which Ub-independent substrates are recruited to the 26S proteasome.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Proteínas de Unión al ADN/genética , Complejo de la Endopetidasa Proteasomal/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
9.
Biochim Biophys Acta ; 1823(4): 818-25, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22285817

RESUMEN

Protein degradation by the proteasome plays an important role in all major cellular pathways. Aberrant proteasome activity is associated with numerous human diseases including cancer and neurological disorders, but the underlying mechanism is virtually unclear. At least part of the reason for this is due to lack of understanding of the regulation of human proteasome genes. In this study, we found that a large set of human proteasome genes carry the CCAAT box in their promoters. We further demonstrated that the basal expression of these CCAAT box-containing proteasome genes is regulated by the transcription factor NF-Y. Knockdown of NF-YA, an essential subunit of NF-Y, reduced proteasome gene expression and compromised the cellular proteasome activity. In addition, we showed that knockdown of NF-YA sensitized breast cancer cells to the proteasome inhibitor MG132. This study unveils a new role for NF-Y in the regulation of human proteasome genes and suggests that NF-Y may be a potential target for cancer therapy.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/genética , Secuencia de Bases , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Leupeptinas/farmacología , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Unión Proteica/efectos de los fármacos , Unión Proteica/genética
10.
PLoS One ; 5(4): e9877, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20376190

RESUMEN

BACKGROUND: The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. The integrity of the Rpn4-proteasome feedback loop is critical for cell viability under stressed conditions. We have demonstrated that inhibition of Rpn4 degradation sensitizes cells to DNA damage, particularly in response to high doses of DNA damaging agents. The underlying mechanism, however, remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using yeast genetics and biochemical approach we show that inhibition of Rpn4 degradation displays a synthetic growth defect with deletion of the MEC1 checkpoint gene and sensitizes several checkpoint mutants to DNA damage. In addition, inhibition of Rpn4 degradation leads to a defect in repair of double-strand breaks (DSBs) by nonhomologous end-joining (NHEJ). The expression levels of several key NHEJ genes are downregulated and the recruitment of Yku70 to a DSB is reduced by inhibition of Rpn4 degradation. We find that Rpn4 and the proteasome are recruited to a DSB, suggesting their direct participation in NHEJ. Inhibition of Rpn4 degradation may result in a concomitant delay of release of Rpn4 and the proteasome from a DSB. CONCLUSION/SIGNIFICANCE: This study provides the first evidence for the role of proteasomal degradation of Rpn4 in NHEJ.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Retroalimentación Fisiológica , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Roturas del ADN de Doble Cadena , Regulación Fúngica de la Expresión Génica/fisiología , Inhibidores de Proteasoma , Transporte de Proteínas
11.
Microbiology (Reading) ; 156(Pt 5): 1505-1516, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20093290

RESUMEN

In addition to the known response regulator ErbR (former AgmR) and the two-component regulatory system EraSR (former ExaDE), three additional regulatory proteins have been identified as being involved in controlling transcription of the aerobic ethanol oxidation system in Pseudomonas aeruginosa. Two putative sensor kinases, ErcS and ErcS', and a response regulator, ErdR, were found, all of which show significant similarity to the two-component flhSR system that controls methanol and formaldehyde metabolism in Paracoccus denitrificans. All three identified response regulators, EraR (formerly ExaE), ErbR (formerly AgmR) and ErdR, are members of the luxR family. The three sensor kinases EraS (formerly ExaD), ErcS and ErcS' do not contain a membrane domain. Apparently, they are localized in the cytoplasm and recognize cytoplasmic signals. Inactivation of gene ercS caused an extended lag phase on ethanol. Inactivation of both genes, ercS and ercS', resulted in no growth at all on ethanol, as did inactivation of erdR. Of the three sensor kinases and three response regulators identified thus far, only the EraSR (formerly ExaDE) system forms a corresponding kinase/regulator pair. Using reporter gene constructs of all identified regulatory genes in different mutants allowed the hierarchy of a hypothetical complex regulatory network to be established. Probably, two additional sensor kinases and two additional response regulators, which are hidden among the numerous regulatory genes annotated in the genome of P. aeruginosa, remain to be identified.


Asunto(s)
Proteínas Bacterianas/metabolismo , Etanol/metabolismo , Proteínas Quinasas/metabolismo , Pseudomonas aeruginosa/metabolismo , Factores de Transcripción/metabolismo , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Genes Bacterianos , Mutagénesis Sitio-Dirigida , Operón , Oxidación-Reducción , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteínas Quinasas/genética , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética
12.
Genetics ; 184(2): 335-42, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933873

RESUMEN

The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback loop in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. In addition to the proteasome genes, Rpn4 regulates numerous other genes involved in a wide range of cellular pathways. Therefore, the Rpn4-proteasome negative feedback circuit not only controls proteasome abundance, but also gauges the expression of other Rpn4 target genes. Our previous work has shown that Rpn4-induced gene expression is critical for cell viability under stressed conditions. Here we investigate whether proteasomal degradation of Rpn4 is also important for cell survival in response to stress. To this end, we generate a stabilized Rpn4 mutant (Rpn4*) that retains its transcription activity. We find that expression of Rpn4* severely reduces cell viability in response to various genotoxic and proteotoxic agents. This detrimental effect can be eliminated by a point mutation that abolishes the transcription activity of Rpn4*, suggesting that overexpression of some Rpn4 target genes weakens the cell's ability to cope with stress. Moreover, we demonstrate that inhibition of Rpn4 degradation causes synthetic growth defects when combined with proteasome impairment resulting from mutation of a proteasome gene or accumulation of misfolded endoplasmic reticulum membrane proteins. Rpn4 thus represents an important stress-responsive mediator whose degradation as well as availability are critical for cell survival under stressed conditions.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mutágenos/toxicidad , Mutación Puntual , Complejo de la Endopetidasa Proteasomal/genética , Pliegue de Proteína/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
13.
J Biol Chem ; 282(14): 10639-46, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17277357

RESUMEN

The Ni-Fe carbon monoxide (CO) dehydrogenase II (CODHII(Ch)) from the anaerobic CO-utilizing hydrogenogenic bacterium Carboxydothermus hydrogenoformans catalyzes the oxidation of CO, presumably at the Ni-(micro(2)S)-Fe1 subsite of the [Ni-4S-5S] cluster in the active site. The CO oxidation mechanism proposed on the basis of several CODHII(Ch) crystal structures involved the apical binding of CO at the nickel ion and the activation of water at the Fe1 ion of the cluster. To understand how CO interacts with the active site, we have studied the reactivity of the cluster with potassium cyanide and analyzed the resulting type of nickel coordination by x-ray absorption spectroscopy. Cyanide acts as a competitive inhibitor of reduced CODHII(Ch) with respect to the substrate CO and is therefore expected to mimic the substrate. It inhibits the enzyme reversibly, forming a nickel cyanide. In this reaction, one of the four square-planar sulfur ligands of nickel is replaced by the carbon atom of cyanide, suggesting removal of the micro(2)S from the Ni-(micro(2)S)-Fe1 subsite. Upon reactivation of the inhibited enzyme, cyanide is released, and the square-planar coordination of nickel by 4S ligands is recovered, which includes the reformation of the Ni-(micro(2)S)-Fe1 bridge. The results are summarized in a model of the CO oxidation mechanism at the [Ni-4Fe-5S] active site cluster of CODHII(Ch) from C. hydrogenoformans.


Asunto(s)
Aldehído Oxidorreductasas/química , Proteínas Bacterianas/química , Clostridium/enzimología , Hierro/química , Complejos Multienzimáticos/química , Cianuro de Potasio/química , Absorciometría de Fotón , Aldehído Oxidorreductasas/antagonistas & inhibidores , Aldehído Oxidorreductasas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Hierro/metabolismo , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Níquel/química , Níquel/metabolismo , Oxidación-Reducción , Azufre/química , Azufre/metabolismo
14.
Biotechnol J ; 1(5): 556-63, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16892291

RESUMEN

Gluconobacter oxydans DSM 2343 (ATCC 621H)catalyzes the oxidation of glucose to gluconic acid and subsequently to 5-keto-D-gluconic acid (5-KGA), a precursor of the industrially important L-(+)-tartaric acid. To further increase 5-KGA production in G. oxydans, the mutant strain MF1 was used. In this strain the membrane-bound gluconate-2-dehydrogenase activity, responsible for formation of the undesired by-product 2-keto-D-gluconic acid, is disrupted. Therefore, high amounts of 5-KGA accumulate in the culture medium. G. oxydans MF1 was equipped with plasmids allowing the overexpression of the membrane-bound enzymes involved in 5-KGA formation. Overexpression was confirmed on the transcript and enzymatic level. Furthermore, the resulting strains overproducing the membrane-bound glucose dehydrogenase showed an increased gluconic acid formation, whereas the overproduction of gluconate-5-dehydrogenase resulted in an increase in 5-KGA of up to 230 mM. Therefore, these newly developed recombinant strains provide a basis for further improving the biotransformation process for 5-KGA production.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Membrana Celular/metabolismo , Mejoramiento Genético/métodos , Gluconatos/metabolismo , Gluconobacter oxydans/metabolismo , Glucosa/metabolismo , Deshidrogenasas de Carbohidratos/genética , Gluconobacter oxydans/genética , Oxidación-Reducción , Ingeniería de Proteínas/métodos
15.
Appl Microbiol Biotechnol ; 66(6): 668-74, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15735967

RESUMEN

Gluconobacter oxydans converts glucose to gluconic acid and subsequently to 2-keto-D-gluconic acid (2-KGA) and 5-keto-D-gluconic acid (5-KGA) by membrane-bound periplasmic pyrroloquinoline quinone-dependent and flavin-dependent dehydrogenases. The product pattern obtained with several strains differed significantly. To increase the production of 5-KGA, which can be converted to industrially important L-(+)-tartaric acid, growth parameters were optimized. Whereas resting cells of G. oxydans ATCC 621H converted about 11% of the available glucose to 2-KGA and 6% to 5-KGA, with growing cells and improved growth under defined conditions (pH 5, 10% pO2, 0.05% pCO2) a conversion yield of about 45% 5-KGA from the available glucose was achieved. As the accumulation of the by-product 2-KGA is highly disadvantageous for an industrial application of G. oxydans, a mutant was generated in which the membrane-bound gluconate-2-dehydrogenase complex was inactivated. This mutant, MF1, grew in a similar way to the wild type, but formation of the undesired 2-KGA was not observed. Under improved growth conditions, mutant MF1 converted the available glucose almost completely (84%) into 5-KGA. Therefore, this newly developed recombinant strain is suitable for the industrial production of 5-KGA.


Asunto(s)
Gluconatos/metabolismo , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Glucosa/metabolismo , Microbiología Industrial , Mutación , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...