Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 259: 116407, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776800

RESUMEN

Metal-oxide semiconductors (MOSs) have emerged as pivotal components in technology related to biosensors and bioelectronics. Detecting biomarkers in sweat provides a glimpse into an individual's metabolism without the need for sample preparation or collection steps. The distinctive attributes of this biosensing technology position it as an appealing option for biomedical applications beyond the scope of diagnosis and healthcare monitoring. This review encapsulates ongoing developments of cutting-edge biosensors based on MOSs. Recent advances in MOS-based biosensors for human sweat analyses are reviewed. Also discussed is the progress in sweat-based biosensing technologies to detect and monitor diseases. Next, system integration of biosensors is demonstrated ultimately to ensure the accurate and reliable detection and analysis of target biomarkers beyond individual devices. Finally, the challenges and opportunities related to advanced biosensors and bioelectronics for biomedical applications are discussed.


Asunto(s)
Técnicas Biosensibles , Metales , Óxidos , Semiconductores , Sudor , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Humanos , Sudor/química , Metales/química , Óxidos/química , Diseño de Equipo , Biomarcadores/análisis
2.
Healthc Inform Res ; 30(2): 103-112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755101

RESUMEN

OBJECTIVES: In the Fourth Industrial Revolution, there is a focus on managing diverse medical data to improve healthcare and prevent disease. The challenges include tracking detailed medical records across multiple institutions and the necessity of linking domestic public medical entities for efficient data sharing. This study explores MyHealthWay, a Korean healthcare platform designed to facilitate the integration and transfer of medical data from various sources, examining its development, importance, and legal implications. METHODS: To evaluate the management status and utilization of MyHealthWay, we analyzed data types, security, legal issues, domestic versus international issues, and infrastructure. Additionally, we discussed challenges such as resource and infrastructure constraints, regulatory hurdles, and future considerations for data management. RESULTS: The secure sharing of medical information via MyHealthWay can reduce the distance between patients and healthcare facilities, fostering personalized care and self-management of health. However, this approach faces legal challenges, particularly relating to data standardization and access to personal health information. Legal challenges in data standardization and access, particularly for secondary uses such as research, necessitate improved regulations. There is a crucial need for detailed governmental guidelines and clear data ownership standards at institutional levels. CONCLUSIONS: This report highlights the role of Korea's MyHealthWay, which was launched in 2023, in transforming healthcare through systematic data integration. Challenges include data privacy and legal complexities, and there is a need for data standardization and individual empowerment in health data management within a systematic medical big data framework.

3.
J Korean Med Sci ; 39(5): e53, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317451

RESUMEN

BACKGROUND: Worldwide, sepsis is the leading cause of death in hospitals. If mortality rates in patients with sepsis can be predicted early, medical resources can be allocated efficiently. We constructed machine learning (ML) models to predict the mortality of patients with sepsis in a hospital emergency department. METHODS: This study prospectively collected nationwide data from an ongoing multicenter cohort of patients with sepsis identified in the emergency department. Patients were enrolled from 19 hospitals between September 2019 and December 2020. For acquired data from 3,657 survivors and 1,455 deaths, six ML models (logistic regression, support vector machine, random forest, extreme gradient boosting [XGBoost], light gradient boosting machine, and categorical boosting [CatBoost]) were constructed using fivefold cross-validation to predict mortality. Through these models, 44 clinical variables measured on the day of admission were compared with six sequential organ failure assessment (SOFA) components (PaO2/FIO2 [PF], platelets (PLT), bilirubin, cardiovascular, Glasgow Coma Scale score, and creatinine). The confidence interval (CI) was obtained by performing 10,000 repeated measurements via random sampling of the test dataset. All results were explained and interpreted using Shapley's additive explanations (SHAP). RESULTS: Of the 5,112 participants, CatBoost exhibited the highest area under the curve (AUC) of 0.800 (95% CI, 0.756-0.840) using clinical variables. Using the SOFA components for the same patient, XGBoost exhibited the highest AUC of 0.678 (95% CI, 0.626-0.730). As interpreted by SHAP, albumin, lactate, blood urea nitrogen, and international normalization ratio were determined to significantly affect the results. Additionally, PF and PLTs in the SOFA component significantly influenced the prediction results. CONCLUSION: Newly established ML-based models achieved good prediction of mortality in patients with sepsis. Using several clinical variables acquired at the baseline can provide more accurate results for early predictions than using SOFA components. Additionally, the impact of each variable was identified.


Asunto(s)
Servicio de Urgencia en Hospital , Sepsis , Humanos , Albúminas , Ácido Láctico , Aprendizaje Automático , Sepsis/diagnóstico
4.
Biotechnol Adv ; 70: 108297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38061687

RESUMEN

The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.


Asunto(s)
Materiales Biomiméticos , Nanoestructuras , Dispositivos Electrónicos Vestibles , Humanos , Calidad de Vida , Biotecnología
5.
J Clin Med ; 13(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202043

RESUMEN

Pressure ulcers (PUs) are a prevalent skin disease affecting patients with impaired mobility and in high-risk groups. These ulcers increase patients' suffering, medical expenses, and burden on medical staff. This study introduces a clinical decision support system and verifies it for predicting real-time PU occurrences within the intensive care unit (ICU) by using MIMIC-IV and in-house ICU data. We develop various machine learning (ML) and deep learning (DL) models for predicting PU occurrences in real time using the MIMIC-IV and validate using the MIMIC-IV and Kangwon National University Hospital (KNUH) dataset. To address the challenge of missing values in time series, we propose a novel recurrent neural network model, GRU-D++. This model outperformed other experimental models by achieving the area under the receiver operating characteristic curve (AUROC) of 0.945 for the on-time prediction and AUROC of 0.912 for 48h in-advance prediction. Furthermore, in the external validation with the KNUH dataset, the fine-tuned GRU-D++ model demonstrated superior performances, achieving an AUROC of 0.898 for on-time prediction and an AUROC of 0.897 for 48h in-advance prediction. The proposed GRU-D++, designed to consider temporal information and missing values, stands out for its predictive accuracy. Our findings suggest that this model can significantly alleviate the workload of medical staff and prevent the worsening of patient conditions by enabling timely interventions for PUs in the ICU.

6.
Sensors (Basel) ; 22(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36560059

RESUMEN

Wearable exoskeleton robots have become a promising technology for supporting human motions in multiple tasks. Activity recognition in real-time provides useful information to enhance the robot's control assistance for daily tasks. This work implements a real-time activity recognition system based on the activity signals of an inertial measurement unit (IMU) and a pair of rotary encoders integrated into the exoskeleton robot. Five deep learning models have been trained and evaluated for activity recognition. As a result, a subset of optimized deep learning models was transferred to an edge device for real-time evaluation in a continuous action environment using eight common human tasks: stand, bend, crouch, walk, sit-down, sit-up, and ascend and descend stairs. These eight robot wearer's activities are recognized with an average accuracy of 97.35% in real-time tests, with an inference time under 10 ms and an overall latency of 0.506 s per recognition using the selected edge device.


Asunto(s)
Aprendizaje Profundo , Dispositivo Exoesqueleto , Robótica , Dispositivos Electrónicos Vestibles , Humanos , Actividades Humanas
7.
ACS Nano ; 16(11): 18355-18365, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36040188

RESUMEN

Self-poled molybdenum disulfide embedded polyvinylidene fluoride (MoS2@PVDF) hybrid nanocomposite films fabricated by a bar-printing process are demonstrated to improve the output performances of triboelectric nanogenerators (TENGs). Comparative analyses of MoS2@PVDF films with different MoS2 concentrations and the synergic effect based on postannealing at different temperatures were examined to increase the triboelectric open-circuit voltage and the short-circuit current (∼200 V and ∼11.8 µA, respectively). A further comprehensive study of the structural and electrical changes that occur on the surfaces of the proposed hybrid nanocomposite films revealed that both MoS2 incorporation into PVDF and postannealing can individually promote the formation of the ß-crystal phase and generate polarity in the PVDF. In addition, MoS2, which provides triboelectric trap states, was found to play a significant role in improving the charge capture capacity of the nanocomposite film and increasing the potential difference between two electrodes of TENGs. The produced electrical energy of the developed wearable TENGs with excellent operational stability for a long duration was utilized to power a variety of mobile smart gadgets in addition to low-power electronic devices. We believe that this study can provide a simple and effective approach to improving the energy-harvesting capabilities of wearable TENGs based on hybrid nanocomposite films.

8.
ACS Appl Mater Interfaces ; 13(35): 42014-42023, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34450010

RESUMEN

Capacitive-type physical sensors based on hybrid dielectric composites of zinc oxide nanowires/poly(dimethylsiloxane) (ZnO NWs@PDMS) and flexible electrodes of immobilized carbon nanotube (CNT) random networks, which are highly sensitive to pressure and touch stimuli, are demonstrated. Immobilized CNT random networks densely entangled in a Nafion matrix improve the electrical stability of wearable pressure sensors against mechanical stress with a bending radius of 5 mm. The effect of ZnO NW incorporation into PDMS on the sensing performance of pressure sensors is investigated, which results in a significantly enhanced sensitivity of 8.77 × 10-4 Pa-1 in low-pressure regions, compared to pristine PDMS (1.32 × 10-4 Pa-1). This improvement is attributed to the increase in the effective dielectric constant (εr) of the hybrid dielectric composites with their piezoelectric properties. In addition, wearable pressure/touch sensor arrays capable of detecting ultralow pressures (down to 20 Pa) and the real-time identification of touch and pressure stimuli via different sensing mechanisms are demonstrated. We believe that the multifunctionality introduced by the proposed sensors can extend the potential of physical sensor applications, while they are suitable for integration with wearable electronics based on hybrid nanocomposites and interfaces.

9.
ACS Appl Mater Interfaces ; 13(21): 25082-25091, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34014644

RESUMEN

Microwave-assisted functionalization of zinc oxide nanoflowers (ZnO NFs) with palladium nanoparticles (Pd NPs) is demonstrated to realize high-performance chemiresistive-type hydrogen (H2) gas sensors operating at room temperature (RT). The developed gas sensors exhibit a high response of up to 70% at 50 ppm and a theoretical detection limit of 10 ppb. The formation of ZnO NFs with an enhanced specific surface area and their functionalization with Pd NPs are investigated through various characterizations. Furthermore, the optimization of microwave absorption upon the structural incorporations between nanostructures (NF-NPs) is investigated for solution-based functionalization at low temperatures (below 120 °C) for short process times (within 1 min), compared to the conventional thermal annealing at 250 °C for 1 h. Highly sensitive and selective ZnO-based gas sensors enabling the detection of H2 gas molecules at 300 ppb concentration at RT exhibit a short response/recovery time of below 3 min and a good selectivity toward different gases including nitric oxide, carbon monoxide, and oxygen. The successful functionalization of nanostructured metal oxide semiconductors (MOSs) with metal NPs via effective and practical microwave absorption enhances the potential on highly sensitive and selective chemiresistive-type MOS-based gas sensors operating at RT without additional heaters or photogenerators.

10.
Biosens Bioelectron ; 184: 113231, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33866074

RESUMEN

Although conventional skin-attachable electronics exhibit good functionalities, their direct attachment (without any adhesive) to human skin with sufficient conformal contact is challenging. Herein, all-solution-processed on-skin electronics based on self-reconfigurable high-weight-per- volume-gelatin (HWVG) film constructed using an effective, biocompatible water absorption-evaporation technique are demonstrated. Completely conformal contact of self-reconfigurable HWVG films is realized by rapidly inducing anisotropic swelling in the perpendicular direction and covering any curvature on the skin without spatial gap or void after shrinking. A sufficiently thin HWVG film (~2 um) exhibited higher adhesion owing to van der Waals force and the carboxylic acid and amine groups in HWVG film form cross-linkages through intermolecular bonds with human skin. Self-reconfigurable HWVG films with high biocompatibility are optimized to afford a superior efficiency of 87.83 % at a concentration of 20 % (w/v) and a storage modulus of 1822 MPa at 36.5 °C. Furthermore, functional nanoelectrodes consisting of self-reconfigurable silver nanowires/HWVG films for high-performance on-skin sensors allowing the detection of sensitive motion and electrophysiological signals, as well as an armband-type sensor system incorporated with a smartphone for health-care monitoring are demonstrated. Outstanding performances, including stability, reliability, flexibility, re-usability, biocompatibility, and permeability of on-skin electronics based on HWVG films can open-up a prospective route to realizing breathable human-machine interfaces based on biocompatible materials and processes.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Electrónica , Gelatina , Humanos , Estudios Prospectivos , Reproducibilidad de los Resultados
11.
Curr Eye Res ; 45(12): 1598-1603, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32478585

RESUMEN

PURPOSE: Knowledge of the distribution of intramuscular nerves of the extraocular muscles is crucial for understanding their function. The purpose of this study was to elucidate the intramuscular distribution of the oculomotor nerve within the inferior rectus muscle (IRM) using Sihler's staining. METHOD: Ninety-three IRM from 50 formalin-embalmed cadavers were investigated. The IRM including its branches of the oculomotor nerve was finely dissected from its origin to the point where it inserted into the sclera. The intramuscular nerve course was investigated after performing Sihler's whole-mount nerve staining technique that stains the nerves while rendering other soft tissues either translucent or transparent. RESULTS: The oculomotor nerve enters the IRM around the distal one-fourth of the muscle and then divides into multiple smaller branches. The intramuscular nerve course finishes around the distal three-fifth of the IRM in gross observations. The types of branching patterns of the IRM could be divided into two subcategories based on whether or not topographic segregation was present: (1) no significant compartmental segregation (55.9% of cases) and (2) a several-zone pattern with possible segregation (44.1% of cases). Possible compartmentalization was less clear for the IRM, which contained overlapping mixed branches between different trunks. CONCLUSION: Sihler's staining is a useful technique for visualizing the gross nerve distribution of the IRM. The new information about the nerve distribution and morphological features provided by this study will improve the understanding of the biomechanics of the IRM, and could be useful for strabismus surgery.


Asunto(s)
Músculos Oculomotores/inervación , Nervio Oculomotor/anatomía & histología , Anciano , Anciano de 80 o más Años , Cadáver , Femenino , Humanos , Masculino , Persona de Mediana Edad , Coloración y Etiquetado/métodos
12.
Anat Cell Biol ; 53(1): 21-26, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32274245

RESUMEN

Frankfort horizontal line, the line passing through the orbitale and porion, is one of the most widely used intracranial landmarks in cephalometric analysis. This study investigated the use of the orbito-occipital line extending from the orbitale to the external occipital protuberance as a novel horizontal line of the skull for substituting the Frankfort horizontal line. We evaluated the reproducibility of the new landmark and measured the angle between the orbito-occipital line and the Frankfort line. This study was conducted on 170 facial computed tomography (CT) scans of living adults from the Department of Plastic Surgery. After three-dimensionally reconstructed images were obtained from facial CT, the porion, orbitale, and external occipital protuberance were indicated by two observers twice. The angles between the orbito-meatal line (inferior orbital rim to porion; the Frankfort line) and the orbito-occipital line (inferior orbital rim to external occipital protuberance) were measured. There was no significant intraobserver or interobserver bias. The overall angle between the Frankfort line and orbito-occipital line was -0.5°±2.2° (mean±standard deviation). There was no statistically significant difference among side and sex. This study demonstrated good reproducibility of a new landmark-the external occipital protuberance-tested to replace the porion. The orbito-occipital line is a reliable, reproducible, and easily identifiable line, and has potential as a novel standard horizontal line to replace or at least supplement the Frankfort line in anthropological studies and certain clinical applications.

13.
J Plast Reconstr Aesthet Surg ; 73(6): 1130-1134, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32115380

RESUMEN

BACKGROUND: The deep temporal fascia (DTF) is known to separate into two layers that descend to attach to the zygomatic arch. When surgeons reduce an isolated fracture of the zygomatic arch through a temporal approach, the temporal incision site needs to be superior to the split line of the DTF. MATERIALS AND METHODS: Sixty-seven hemifacial cadavers were investigated after removing the skin, subcutaneous tissue, and superficial temporal fascia. The superficial layer of the DTF was exposed. We cut the superficial layer along the line along, which it adhered to the deep layer inseparably. The heights of the split line of the DTF from the superior border of the zygomatic arch and from the top of the helix were measured at three points: at the jugale, zygion, and 3 cm from the tragus. RESULTS: In all cases there were thick identifiable deep layers of the DTF. The mean heights of the split line of the DTF from the superior border of the zygomatic arch were 49.8, 46.7, and 42.6 mm at the jugale, zygion, and 3 cm from the tragus, respectively; the corresponding mean heights of the split line from the top of the helix were 19.1, 15.6, and 11.4 mm. CONCLUSIONS: Knowledge of the mean height of the split line of the DTF will be helpful for surgeons to determine the temporal incision site for ensuring the safe reduction of a zygomatic arch fracture.


Asunto(s)
Músculo Temporal/cirugía , Cigoma/lesiones , Fracturas Cigomáticas/cirugía , Anciano , Anciano de 80 o más Años , Cadáver , Reducción Cerrada/métodos , Fascia/anatomía & histología , Fasciotomía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Temporal/anatomía & histología , Cigoma/cirugía
14.
Curr Eye Res ; 45(2): 215-220, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31509029

RESUMEN

Purpose: The intramuscular nerve distribution in the extraocular muscles is important for understanding their function. This study aimed to determine the intramuscular nerve distribution of the oculomotor nerve within the inferior oblique muscle (IO) using Sihler's staining.Method: Seventy-two IOs from 50 formalin-embalmed cadavers were investigated. The IO including its branch of the oculomotor nerve was finely dissected from its origin to its insertion point into the sclera. The total length of the muscle and its width were measured. The intramuscular nerve course was investigated after performing Sihler's staining, which is a whole-mount nerve-staining technique that stains the nerves while rendering other soft tissues either translucent or transparent.Results: The total length of the muscle and muscle width were 30.0 ± 2.8 mm (mean±standard deviation), 8.8 ± 1.2 mm, respectively. The oculomotor nerve enters the IO around the middle of the muscle and then divides into multiple smaller branches without distinct subdivisions. The intramuscular nerve distribution within the IO has a root-like arborization and supplies the entire width of the muscle. The Sihler's stained intramuscular nerve course (covering a length of 7.6 ± 1.2 mm) finishes around the distal one-third of the IO in gross observations.Conclusion: Sihler's staining is a useful technique for visualizing the gross nerve distribution of the IO. This new information about the nerve distribution and morphological features will improve the understanding of the biomechanics of the IO.


Asunto(s)
Músculos Oculomotores/inervación , Nervio Oculomotor/anatomía & histología , Anciano , Anciano de 80 o más Años , Cadáver , Colorantes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Unión Neuromuscular/anatomía & histología , Coloración y Etiquetado
15.
Biosens Bioelectron ; 150: 111919, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31787449

RESUMEN

Cylindrical fullerenes (or carbon nanotubes (CNTs)) have been extensively investigated as potential sensor platforms due to effective and practical manipulation of their physical and chemical properties by functionalization/doping with chemical groups suitable for novel nanocarrier systems. CNTs play a significant role in biomedical applications due to rapid development of synthetic methods, structural integration, surface area-controlled heteroatom doping, and electrical conductivity. This review article comprehensively summarized recent trends in biomedical science and technologies utilizing a promising nanomaterial of CNTs in disease diagnosis and therapeutics, based on their biocompatibility and significance in drug delivery, implants, and bio imaging. Biocompatibility of CNTs is essential for designing effective and practical electronic applications in the biomedical field particularly due to their growing potential in the delivery of anticancer agents. Furthermore, functionalized CNTs have been shown to exhibit advanced electrochemical properties, responsible for functioning of numerous oxidase and dehydrogenase based amperometric biosensors. Finally, faster signal transduction by CNTs allows charge transfer between underlying electrode and redox centres of biomolecules (enzymes).


Asunto(s)
Fulerenos/química , Nanotubos de Carbono/química , Animales , Técnicas Biosensibles/métodos , Sistemas de Liberación de Medicamentos/métodos , Electrónica/métodos , Humanos , Prótesis e Implantes
16.
Plast Reconstr Surg ; 144(6): 1295-1300, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31764637

RESUMEN

BACKGROUND: Vision loss caused by retrograde occlusion of the central retinal artery is a serious complication of cosmetic filler injections. Salvage methods that involve applying hyaluronidases in the retrobulbar space to degrade filler materials have been proposed recently for rescuing the retinal circulation in an ophthalmic emergency. METHODS: Sixty-six eyeballs and orbital contents were extracted from formalin-embalmed cadavers and dissected carefully to examine the topographic relationship of the central retinal artery and optic nerve. To observe the three-dimensional course of a central retinal artery that invaginates into the optic nerve, serial sections reconstructed at 100-µm intervals using software were visualized in 11 specimens. RESULTS: The central retinal artery ramified from the ophthalmic artery and entered the optic nerve inferiorly at 8.7 ± 1.7 mm (mean ± SD) from the posterior margin of the eyeball. The intraneural course of a central retinal artery changed acutely between the periorbital environment of the fibrous optic nerve sheath, intermediate subarachnoid spaces, and center of the optic nerve stroma. CONCLUSION: When applying a retrobulbar approach for central retinal artery reperfusion with hyaluronidases, the reliable access route is suggested to be at a depth of 3.0 to 3.5 cm from the border of the inferolateral orbital rim, based on consideration of the entry point of the central retinal artery into the optic nerve.


Asunto(s)
Hialuronoglucosaminidasa/administración & dosificación , Reperfusión/métodos , Oclusión de la Arteria Retiniana/patología , Arteria Retiniana/patología , Anciano , Anciano de 80 o más Años , Cadáver , Rellenos Dérmicos/efectos adversos , Humanos , Persona de Mediana Edad , Soluciones Oftálmicas/administración & dosificación , Oclusión de la Arteria Retiniana/inducido químicamente , Terapia Recuperativa/métodos
17.
Healthc Inform Res ; 25(4): 297-304, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31777673

RESUMEN

OBJECTIVES: In this paper, we present an efficient method to visualize computed tomography (CT) datasets using ambient occlusion, which is a global illumination technique that adds depth cues to the output image. We can change the transfer function (TF) for volume rendering and generate output images in real time. METHODS: In preprocessing, the mean and standard deviation of each local vicinity are calculated. During rendering, the ambient light intensity is calculated. The calculation is accelerated on the assumption that the CT value of the local vicinity of each point follows the normal distribution. We approximate complex TF forms with a smaller number of connected line segments to achieve additional acceleration. Ambient occlusion is combined with the existing local illumination technique to produce images with depth in real time. RESULTS: We tested the proposed method on various CT datasets using hand-drawn TFs. The proposed method enabled real-time rendering that was approximately 40 times faster than the previous method. As a result of comparing the output image quality with that of the conventional method, the average signal-to-noise ratio was approximately 40 dB, and the image quality did not significantly deteriorate. CONCLUSIONS: When rendering CT images with various TFs, the proposed method generated depth-sensing images in real time.

18.
Anat Cell Biol ; 52(3): 242-249, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31598352

RESUMEN

The aim of this study was to identify the three-dimensional topography of the sphenoid door jamb (SDJ) in the lateral orbital wall and to propose navigational guidelines for safe deep lateral decompression using surgical landmarks. The 120 orbits and SDJs of 60 subjects were three-dimensionally reconstructed using Mimics software. The mean volumes of the orbit and SDJ were 24.3 mm3 and 2.0 mm3, respectively. The mean distances from the lateral orbital margin (LOM) to the anterior and posterior margins of the SDJ were 13.2 and 36.3 mm, respectively. The mean distances from the superior orbital fissure to the LOM and to the posterior margin of the SDJ were 40.2 mm and 4.6 mm, respectively. The mean distances from the inferior orbital fissure (IOF) to the anterior and posterior margins of the SDJ were 3.8 mm and 20.5 mm, respectively. In the superior approach of the orbit, it can be predicted that the area up to 3 cm posterior from the LOM is safe, while 1 cm posterior from the safe zone could be a dangerous zone. In the inferior approach of the orbit, the safe area will be about 1 cm posterior from the anterior tip of the IOF, and the area up to 1 cm posterior from the safe zone should be approached with extreme care.

19.
Sci Rep ; 9(1): 8416, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182751

RESUMEN

Amorphous metal-oxide semiconductors (AOSs) such as indium-gallium-zinc-oxide (IGZO) as an active channel have attracted substantial interests with regard to high-performance thin-film transistors (TFTs). Recently, intensive and extensive studies of flexible and/or wearable AOS-based TFTs fabricated by solution-process have been reported for emerging approaches based on device configuration and fabrication process. However, several challenges pertaining to practical and effective solution-process technologies remain to be resolved before low-power consuming AOS-based TFTs for wearable electronics can be realized. In this paper, we investigate the non-thermal annealing processes for sol-gel based metal-oxide semiconductor and dielectric films fabricated by deep ultraviolet (DUV) photo and microwave annealing at low temperature, compared to the conventional thermal annealing at high temperature. A comprehensive investigation including a comparative analysis of the effects of DUV photo and microwave annealing on the degree of metal-oxide-metal networks in amorphous IGZO and high-dielectric-constant (high-k) aluminum oxide (Al2O3) films and device performance of IGZO-TFTs in a comparison with conventional thermal annealing at 400 °C was conducted. We also demonstrate the feasibility of wearable IGZO-TFTs with Al2O3 dielectrics on solution-processed polyimide films exhibiting a high on/off current ratio of 5 × 104 and field effect mobility up to 1.5 cm2/V-s operating at 1 V. In order to reduce the health risk and power consumption during the operation of wearable electronics, the operating voltage of IGZO-TFTs fabricated by non-thermal annealing at low temperature was set below ~1 V. The mechanical stability of wearable IGZO-TFTs fabricated by an all-solution-process except metal electrodes, against cyclic bending tests with diverse radius of curvatures in real-time was investigated. Highly stable and robust flexible IGZO-TFTs without passivation films were achieved even under continuous flexing with a curvature radius of 12 mm.

20.
J Nanosci Nanotechnol ; 19(10): 6178-6182, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026932

RESUMEN

High dielectric constant (high-k) materials have been extensively investigated for low-voltage operating electronics. In recent years, solution-processed high-k dielectrics have been of technological interests in low fabrication cost, large area process and good film quality, compared to the vacuum-process technology. In this paper, we demonstrate solution-processed aluminum oxide (Al2O3) dielectrics for high performance solution-processed indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) operating at low voltage. The material and electrical properties of Al2O3 dielectrics fabricated at different post-annealing temperatures were analyzed by atomic force microscopy, scanning electron microscopy, X-ray diffraction and capacitance-voltage measurements. We also investigate the effect of crystalline Al2O3 dielectrics on the device performance of solution-processed IGZO TFTs. It is concluded that improved interfacial characteristics of crystalline Al2O3 dielectrics enhance the device performance of solution-processed IGZO TFTs operating at 3 V.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...