Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3307, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332252

RESUMEN

Eliminating conventional pulsed B0-gradient coils for magnetic resonance imaging (MRI) can significantly reduce the cost of and increase access to these devices. Phase shifts induced by the Bloch-Siegert shift effect have been proposed as a means for gradient-free, RF spatial encoding for low-field MR imaging. However, nonlinear phasor patterns like those generated from loop coils have not been systematically studied in the context of 2D spatial encoding. This work presents an optimization algorithm to select an efficient encoding trajectory among the nonlinear patterns achievable with a given hardware setup. Performance of encoding trajectories or projections was evaluated through simulated and experimental image reconstructions. Results show that the encodings schemes designed by this algorithm provide more efficient spatial encoding than comparison encoding sets, and the method produces images with the predicted spatial resolution and minimal artifacts. Overall, the work demonstrates the feasibility of performing 2D gradient-free, low-field imaging using the Bloch-Siegert shift which is an important step towards creating low-cost, point-of-care MR systems.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Artefactos , Fantasmas de Imagen
2.
Annu Rev Biomed Eng ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38211326

RESUMEN

Low-field magnetic resonance imaging (MRI) has recently experienced a renaissance that is largely attributable to the numerous technological advancements made in MRI, including optimized pulse sequences, parallel receive and compressed sensing, improved calibrations and reconstruction algorithms, and the adoption of machine learning for image postprocessing. This new attention on low-field MRI originates from a lack of accessibility to traditional MRI and the need for affordable imaging. Low-field MRI provides a viable option due to its lack of reliance on radio-frequency shielding rooms, expensive liquid helium, and cryogen quench pipes. Moreover, its relatively small size and weight allow for easy and affordable installation in most settings. Rather than replacing conventional MRI, low-field MRI will provide new opportunities for imaging both in developing and developed countries. This article discusses the history of low-field MRI, low-field MRI hardware and software, current devices on the market, advantages and disadvantages, and low-field MRI's global potential. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 26 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

3.
PLoS One ; 18(6): e0287344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37319289

RESUMEN

Magnetic resonance imaging (MRI) is a powerful noninvasive diagnostic tool with superior soft tissue contrast. However, access to MRI is limited since current systems depend on homogeneous, high field strength main magnets (B0-fields), with strong switchable gradients which are expensive to install and maintain. In this work we propose a new approach to MRI where imaging is performed in an inhomogeneous field using radiofrequency spatial encoding, thereby eliminating the need for uniform B0-fields and conventional cylindrical gradient coils. The proposed technology uses an innovative data acquisition and reconstruction approach by integrating developments in field cycling, parallel imaging and non-Fourier based algebraic reconstruction. The scanner uses field cycling to image in an inhomogeneous B0-field; in this way magnetization is maximized during the high field polarization phase, and B0 inhomogeneity effects are minimized by using a low field during image acquisition. In addition to presenting the concept, this work provides experimental verification of a long-lived spin echo signal, spatially varying resolution, as well as both simulated and experimental 2D images. Our initial design creates an open MR system that can be installed in a patient examination table for body imaging (e.g., breast or liver) or built into a wall for weighted-spine imaging. The proposed system introduces a new class of inexpensive, open, silent MRIs that could be housed in doctor's offices much like ultrasound is today, making MRI more widely accessible.


Asunto(s)
Imagen por Resonancia Magnética , Imanes , Humanos , Imagen por Resonancia Magnética/métodos , Campos Magnéticos
4.
PLoS One ; 17(9): e0273432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36112594

RESUMEN

Since recovery time of the RF coil is long at low field MRI, the rising and the ring-down times of the square pulse are also long, which means the applied sinc pulse can easily be distorted from the changing amplitude. However, both the rising time and ring-down time can be calculated using Q-factor. Using this information, an RF square pulse were compensated by appending two square pulses before and after the RF pulse. The durations of these RF square pulses were calculated using the Q-factor. Since the amplitude of the sinc pulse changes continuously, a series of square pulses were applied to apply sinc pulse to the coil. The minimum number of square pulses and the amplitude of the square pulses were calculated. It was successfully demonstrated that the sinc pulse can be compensated using a series of square pulses. The more number of square pulses were used, the smoother sinc pulse was applied to the RF coil. The Q-factor was experimentally calculated from the ring-down time of a signal induced in a sniffer loop which was connected to an oscilloscope. The resulting Q-factor was then used to calculate both the duration and amplitude of the square pulses for compensation. Echo trains were also acquired in an inhomogeneous B0 field using the compensated RF pulses. In order to enhance the SNR of the echo trains, a pre-polarization pulse was added to the CPMG spin echo sequence. The SNRs of the echo signal acquired using compensated pulses were compared with those of signal obtained with uncompensated pulses and showed significant improvements of 61.1% and 51.5% for the square and sinc shaped pulses respectively.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Frecuencia Cardíaca , Imagen por Resonancia Magnética/métodos , Silanos
5.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379995

RESUMEN

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Asunto(s)
Hidrocefalia , Animales , Fenómenos Biomecánicos , Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Humanos , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/genética , Ratones , Neurogénesis/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
6.
PLoS One ; 13(10): e0205325, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30308026

RESUMEN

PURPOSE: Functional MRI (fMRI) is a well-established method used to investigate localised brain activation by virtue of the blood oxygen level dependent (BOLD) effect. It often relies on visual presentations using beam projectors, liquid crystal display (LCD) screens, and goggle systems. In this study, we designed an MR compatible, low-cost display unit based on organic light-emitting diodes (OLED) and demonstrated its performance. METHODS: A 3.8" dual OLED module and an MIPI-to-HDMI converter board were used. The OLED module was enclosed using a shielded box to prevent noise emission from the display module and the potentially destructive absorption of high power RF from the MRI transmit pulses. The front of the OLED module was covered by a conductive, transparent mesh. Power was supplied from a non-magnetic battery. The shielding of the display was evaluated by directly measuring the electromagnetic emission with the aid of a pickup loop and a low noise amplifier, as well as by examining the signal-to-noise ratio (SNR) of phantom MRI data. The visual angle of the display was calculated and compared to standard solutions. As a proof of concept of the OLED display for fMRI, a healthy volunteer was presented with a visual block paradigm. RESULTS: The OLED unit was successfully installed inside a 3 T MRI scanner bore. Operation of the OLED unit did not degrade the SNR of the phantom images. The fMRI data suggest that visual stimulation can be effectively delivered to subjects with the proposed OLED unit without any significant interference between the MRI acquisitions and the display module itself. DISCUSSION: We have constructed and evaluated the MR compatible, dual OLED display for fMRI studies. The proposed OLED display provides the benefits of high resolution, wide visual angle, and high contrast video images during fMRI exams.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen/tendencias , Estimulación Luminosa/instrumentación , Corteza Visual/diagnóstico por imagen , Adulto , Diseño de Equipo , Voluntarios Sanos , Humanos , Masculino , Relación Señal-Ruido
7.
IEEE Trans Med Imaging ; 37(7): 1626-1631, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29969413

RESUMEN

Sodium (23Na) MRI provides complementary cellular and metabolic information. However, the intrinsic MR sensitivity of 23Na is considerably lower compared with that of the proton, making it difficult to measure MR-detectable sodium signals. It is therefore important to maintain the signal-to-noise ratio (SNR) of the sodium signal as high as possible. Double-tuned coils are often employed in combinationwith a 1H coil, providing structural images and B0 shimming capability. The double-tuned coil design can be achieved with the use of two geometrically decoupled coils whose B1 field directions are perpendicular to each other. This can be used to design quadrature-driven, single-nucleus coils to improve SNR, and additionally, this coil can also be utilized as a linear-driven double-resonant mode. Here, we have developed and evaluateda quadrature-enhanced, double-tuned coil. The novel coil uses PIN-diode switches, inserted only in the loop coil, to shift the resonance frequency between 1H and 23Na so that 23Na signals can be acquired in quadrature and the capability of using 1H function remains. Consequently, the 23Na SNR values obtained with the double-tuned coil are nearly 33% and 17% higher in comparison with geometrically identical single-tuned coils. SNR plots also show the superiority of double-tuned coil in 23Na.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Diseño de Equipo , Fantasmas de Imagen , Relación Señal-Ruido , Sodio/química
8.
J Magn Reson ; 286: 110-114, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29227914

RESUMEN

A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1H (400 MHz) and inner low-pass coil for 23Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1H and -27 dB for 23Na. Signal-to-noise ratios (SNRs) were calculated and 23Na flip angle maps were acquired. 23Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo1H and 23Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/instrumentación , Sodio/química , Algoritmos , Animales , Química Encefálica , Diseño de Equipo , Femenino , Fantasmas de Imagen , Ratas , Ratas Wistar , Isótopos de Sodio
9.
J Magn Reson ; 279: 11-15, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28411437

RESUMEN

A double-tuned 1H/19F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei.

10.
J Magn Reson ; 273: 28-32, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27741437

RESUMEN

Non-proton MRI has recently garnered gathering interest with the increased availability of ultra high-field MRI system. Assuming the availability of a broadband RF amplifier, performing multinuclear MR experiments essentially requires additional hardware, such as an RF resonator and a T/R switch for each nucleus. A double- or triple-resonant RF probe is typically constructed using traps or PIN-diode circuits, but this approach degrades the signal-to-noise ratio (SNR) and image quality compared to a single-resonant coil and this is a limiting factor. In this work, we have designed the required hardware for multinuclear MR imaging experiments employing six single-resonant coil sets and a purpose-built animal bed; these have been implemented into a home-integrated 9.4T preclinical MRI scanner. System capabilities are demonstrated by distinguishing concentration differences and sensitivity of X-nuclei imaging and spectroscopy without SNR penalty for any nuclei, no subject interruption and no degradation of the static shim conditions.


Asunto(s)
Imagen por Resonancia Magnética , Fantasmas de Imagen , Animales , Diseño de Equipo , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...