Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2219392120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216534

RESUMEN

Lantibiotics are ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are produced by bacteria. Interest in this group of natural products is increasing rapidly as alternatives to conventional antibiotics. Some human microbiome-derived commensals produce lantibiotics to impair pathogens' colonization and promote healthy microbiomes. Streptococcus salivarius is one of the first commensal microbes to colonize the human oral cavity and gastrointestinal tract, and its biosynthesis of RiPPs, called salivaricins, has been shown to inhibit the growth of oral pathogens. Herein, we report on a phosphorylated class of three related RiPPs, collectively referred to as salivaricin 10, that exhibit proimmune activity and targeted antimicrobial properties against known oral pathogens and multispecies biofilms. Strikingly, the immunomodulatory activities observed include upregulation of neutrophil-mediated phagocytosis, promotion of antiinflammatory M2 macrophage polarization, and stimulation of neutrophil chemotaxis-these activities have been attributed to the phosphorylation site identified on the N-terminal region of the peptides. Salivaricin 10 peptides were determined to be produced by S. salivarius strains found in healthy human subjects, and their dual bactericidal/antibiofilm and immunoregulatory activity may provide new means to effectively target infectious pathogens while maintaining important oral microbiota.


Asunto(s)
Bacteriocinas , Humanos , Bacteriocinas/farmacología , Bacteriocinas/química , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Péptidos
2.
Nat Protoc ; 18(2): 490-529, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36352124

RESUMEN

Interest in the communication between the gastrointestinal tract and central nervous system, known as the gut-brain axis, has prompted the development of quantitative analytical platforms to analyze microbe- and host-derived signals. This protocol enables investigations into connections between microbial colonization and intestinal and brain neurotransmitters and contains strategies for the comprehensive evaluation of metabolites in in vitro (organoids) and in vivo mouse model systems. Here we present an optimized workflow that includes procedures for preparing these gut-brain axis model systems: (stage 1) growth of microbes in defined media; (stage 2) microinjection of intestinal organoids; and (stage 3) generation of animal models including germ-free (no microbes), specific-pathogen-free (complete gut microbiota) and specific-pathogen-free re-conventionalized (germ-free mice associated with a complete gut microbiota from a specific-pathogen-free mouse), and Bifidobacterium dentium and Bacteroides ovatus mono-associated mice (germ-free mice colonized with a single gut microbe). We describe targeted liquid chromatography-tandem mass spectrometry-based metabolomics methods for analyzing microbially derived short-chain fatty acids and neurotransmitters from these samples. Unlike other protocols that commonly examine only stool samples, this protocol includes bacterial cultures, organoid cultures and in vivo samples, in addition to monitoring the metabolite content of stool samples. The incorporation of three experimental models (microbes, organoids and animals) enhances the impact of this protocol. The protocol requires 3 weeks of murine colonization with microbes and ~1-2 weeks for liquid chromatography-tandem mass spectrometry-based instrumental and quantitative analysis, and sample post-processing and normalization.


Asunto(s)
Eje Cerebro-Intestino , Espectrometría de Masas en Tándem , Animales , Ratones , Cromatografía Liquida , Vida Libre de Gérmenes , Metabolómica/métodos , Bacterias , Mamíferos , Organoides
3.
J Mass Spectrom Adv Clin Lab ; 26: 23-27, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36388060

RESUMEN

Background: Atovaquone has traditionally been used as an antiparasitic and antifungal agent, but recent studies have shown its potential as an anticancer agent. The high variability in atovaquone bioavailability highlights the need for therapeutic drug monitoring, especially in pediatric patients. The goal of our study was to develop and validate the performance of an assay to quantify atovaquone plasma concentrations collected from pediatric cancer patients using LC-MS/MS. Methods: Atovaquone was extracted from a 10 µL volume of K2-EDTA human plasma using a solution consisting of ACN: EtOH: DMF (8:1:1 v:v:v), separated using reverse-phase chromatography, and detected using a SCIEX 5500 QTrap MS system. LC-MS/MS assay performance was evaluated for precision, accuracy, carryover, sensitivity, specificity, linearity, and interferences. Results: Atovaquone and its deuterated internal standard were analyzed using a gradient chromatographic method that had an overall cycle-time of 7.4 min per injection, and retention times of 4.3 min. Atovaquone was measured over a dynamic concentration range of 0.63 - 80 µM with a deviation within ≤ ± 5.1 % of the target value. Intra- and inter-assay precision were ≤ 2.7 % and ≤ 8.4 %, respectively. Dilutional, carryover, and interference studies were also within acceptable limits. Conclusions: Our studies have shown that our LC-MS/MS-based method is both reliable and robust for the quantification of plasma atovaquone concentrations and can be used to determine the effective dose of atovaquone for pediatric patients treated for AML.

4.
Mult Scler Relat Disord ; 68: 104239, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36279598

RESUMEN

BACKGROUND: 3-phenyllactic acid (PLA) is produced by both intestinal bacteria and the human host. PLA exists in its D- and L- chiral forms. It modulates human immune functions, thereby acting as a mediator of bacterial-host interactions. We aim to determine the amount and potential influence of PLA on clinical and immunological features of MS. METHODS: We measured D- and L-PLA levels in bacterial supernatants and in sera of 60 MS patients and 25 healthy controls. We investigated potential associations between PLA levels, clinical features of MS, serum cytokine levels and ratios of peripheral blood lymphocyte subsets. RESULTS: Multiple gut commensal bacteria possessed the capacity to generate D- and L-PLA. MS patients with benign phenotype showed markedly lower PLA levels than healthy controls or other MS patients. Fingolimod resistant patients had higher PLA levels at baseline. Furthermore, MS patients with higher PLA levels tended to display increased memory B and plasma cell ratios, elevated IL-4 levels and increased ratios of IL-4 and IL-10 producing T cell subsets. CONCLUSION: Collectively, our work indicates that reduced serum levels of PLA could be associated with a favorable clinical course in MS and possibly be used as a biomarker.


Asunto(s)
Subgrupos de Linfocitos B , Esclerosis Múltiple , Humanos , Interleucina-4 , Clorhidrato de Fingolimod
5.
J Physiol ; 600(19): 4303-4323, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36082768

RESUMEN

Infants and young children receive the highest exposures to antibiotics globally. Although there is building evidence that early life exposure to antibiotics increases susceptibility to various diseases including gut disorders later in life, the lasting impact of early life antibiotics on the physiology of the gut and its enteric nervous system (ENS) remains unclear. We treated neonatal mice with the antibiotic vancomycin during their first 10 postnatal days, then examined potential lasting effects of the antibiotic treatment on their colons during young adulthood (6 weeks old). We found that neonatal vancomycin treatment disrupted the gut functions of young adult female and male mice differently. Antibiotic-exposed females had significantly longer whole gut transit while antibiotic-treated males had significantly lower faecal weights compared to controls. Both male and female antibiotic-treated mice had greater percentages of faecal water content. Neonatal vancomycin treatment also had sexually dimorphic impacts on the neurochemistry and Ca2+ activity of young adult myenteric and submucosal neurons. Myenteric neurons of male mice were more disrupted than those of females, while opposing changes in submucosal neurons were seen in each sex. Neonatal vancomycin also induced sustained changes in colonic microbiota and lasting depletion of mucosal serotonin (5-HT) levels. Antibiotic impacts on microbiota and mucosal 5-HT were not sex-dependent, but we propose that the responses of the host to these changes are sex-specific. This first demonstration of long-term impacts of neonatal antibiotics on the ENS, gut microbiota and mucosal 5-HT has important implications for gut function and other physiological systems of the host. KEY POINTS: Early life exposure to antibiotics can increase susceptibility to diseases including functional gastrointestinal (GI) disorders later in life. Yet, the lasting impact of this common therapy on the gut and its enteric nervous system (ENS) remains unclear. We investigated the long-term impact of neonatal antibiotic treatment by treating mice with the antibiotic vancomycin during their neonatal period, then examining their colons during young adulthood. Adolescent female mice given neonatal vancomycin treatment had significantly longer whole gut transit times, while adolescent male and female mice treated with neonatal antibiotics had significantly wetter stools. Effects of neonatal vancomycin treatment on the neurochemistry and Ca2+ activity of myenteric and submucosal neurons were sexually dimorphic. Neonatal vancomycin also had lasting effects on the colonic microbiome and mucosal serotonin biosynthesis that were not sex-dependent. Different male and female responses to antibiotic-induced disruptions of the ENS, microbiota and mucosal serotonin biosynthesis can lead to sex-specific impacts on gut function.


Asunto(s)
Sistema Nervioso Entérico , Vancomicina , Animales , Antibacterianos/efectos adversos , Sistema Nervioso Entérico/fisiología , Femenino , Masculino , Ratones , Serotonina/farmacología , Vancomicina/farmacología , Agua
6.
Children (Basel) ; 9(8)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36010081

RESUMEN

BACKGROUND: Peanut oral immunotherapy has emerged as a novel, active management approach for peanut-allergic sufferers, but limited data exist currently on the role of the microbiome in successful desensitization. OBJECTIVE: We examined the oral and gut microbiome in a cohort of 17 children undergoing peanut oral immunotherapy with the aim to identify the microbiome signatures associated with successful desensitization. We also set out to characterize their fecal metabolic profiles after successful therapy. METHODS: Participants gradually built up their daily dose from 2 mg (starting dose) to 300 mg (maintenance dose) within approximately 40 weeks. We collected a buccal and stool specimen from each subject at two different time points: at baseline and post-therapy (1 month after reaching maintenance). The oral (buccal) and gut (fecal) microbiome was characterized based on sequencing of 16S rRNA gene amplicons with Illumina MiSeq. Fecal short chain fatty acid levels were measured using liquid chromatography-tandem mass spectrometry. RESULTS: We report increased alpha diversity of the oral microbiome post-therapy and have also identified a significant increase in the relative abundance of oral Actinobacteria, associated with the desensitized state. However, the baseline gut microbiome did not differ from the post-therapy. Additionally, fecal short chain fatty acids increased after therapy, but not significantly. CONCLUSION: Our research adds to the limited current knowledge on microbiome and metabolic signatures in pediatric patients completing oral immunotherapy. Post-therapy increased trends of fecal fatty acid levels support a role in modulating the allergic response and potentially exerting protective and anti-inflammatory effects alongside successful desensitization. A better understanding of the microbiome-related mechanisms underlying desensitization may allow development of smarter therapeutic approaches in the near future. CLINICAL IMPLICATION: The oral microbiome composition is altered following successful peanut oral immunotherapy, with a significant increase in alpha diversity and the relative abundance of phylum Actinobacteria. CAPSULE SUMMARY: Significant microbiome changes in children completing peanut immunotherapy include increase in alpha-diversity and overrepresentation of Actinobacteria in the oral microbiome, and increased trends for fecal short chain fatty acids, suggesting a protective effect against the allergic response.

7.
iScience ; 25(5): 104158, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494230

RESUMEN

Gut microbes can synthesize multiple neuro-active metabolites. We profiled neuro-active compounds produced by the gut commensal Bacteroides ovatus in vitro and in vivo by LC-MS/MS. We found that B. ovatus generates acetic acid, propionic acid, isobutyric acid, and isovaleric acid. In vitro, B. ovatus consumed tryptophan and glutamate and synthesized the neuro-active compounds glutamine and GABA. Consistent with our LC-MS/MS-based in vitro data, we observed elevated levels of acetic acid, propionic acid, isobutyric acid, and isovaleric acid in the intestines of B. ovatus mono-associated mice compared with germ-free controls. B. ovatus mono-association also increased the concentrations of intestinal GABA and decreased the concentrations of tryptophan and glutamine compared with germ-free controls. Computational network analysis revealed unique links between SCFAs, neuro-active compounds, and colonization status. These results highlight connections between microbial colonization and intestinal neurotransmitter concentrations, suggesting that B. ovatus selectively influences the presence of intestinal neurotransmitters.

8.
iScience ; 25(4): 104079, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35359802

RESUMEN

Mathematical models have many applications in infectious diseases: epidemiologists use them to forecast outbreaks and design containment strategies; systems biologists use them to study complex processes sustaining pathogens, from the metabolic networks empowering microbial cells to ecological networks in the microbiome that protects its host. Here, we (1) review important models relevant to infectious diseases, (2) draw parallels among models ranging widely in scale. We end by discussing a minimal set of information for a model to promote its use by others and to enable predictions that help us better fight pathogens and the diseases they cause.

9.
Front Microbiol ; 12: 745469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899632

RESUMEN

Background: Bacteroidetes are the most common bacterial phylum in the mammalian intestine and the effects of several Bacteroides spp. on multiple facets of host physiology have been previously described. Of the Bacteroides spp., Bacteroides ovatus has recently garnered attention due to its beneficial effects in the context of intestinal inflammation. In this study, we aimed to examine model host intestinal physiological conditions and dietary modifications to characterize their effects on B. ovatus growth. Methods and Results: Using Biolog phenotypic microarrays, we evaluated 62 primary carbon sources and determined that B. ovatus ATCC 8384 can use the following carbohydrates as primary carbon sources: 10 disaccharides, 4 trisaccharides, 4 polysaccharides, 4 polymers, 3 L-linked sugars, 6 D-linked sugars, 5 amino-sugars, 6 alcohol sugars, and 15 organic acids. Proteomic profiling of B. ovatus bacteria revealed that a significant portion of the B. ovatus proteome contains proteins important for metabolism. Among the proteins, we found glycosyl hydrolase (GH) familes GH2, GH5, GH20, GH 43, GH88, GH92, and GH95. We also identified multiple proteins with antioxidant properties and reasoned that these proteins may support B. ovatus growth in the GI tract. Upon further testing, we showed that B. ovatus grew robustly in various pH, osmolarity, bile, ethanol, and H2O2 concentrations; indicating that B. ovatus is a well-adapted gut microbe. Conclusion: Taken together, we have demonstrated that key host and diet-derived changes in the intestinal environment influence B. ovatus growth. These data provide the framework for future work toward understanding how diet and lifestyle interventions may promote a beneficial environment for B. ovatus growth.

10.
Biomolecules ; 11(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439760

RESUMEN

BACKGROUND: Accumulating evidence indicates that the gut microbiota can synthesize neurotransmitters as well as impact host-derived neurotransmitter levels. In the past, it has been challenging to decipher which microbes influence neurotransmitters due to the complexity of the gut microbiota. METHODS: To address whether a single microbe, Bifidobacterium dentium, could regulate important neurotransmitters, we examined Bifidobacteria genomes and explored neurotransmitter pathways in secreted cell-free supernatant using LC-MS/MS. To determine if B. dentium could impact neurotransmitters in vivo, we mono-associated germ-free mice with B. dentium ATCC 27678 and examined fecal and brain neurotransmitter concentrations. RESULTS: We found that B. dentium possessed the enzymatic machinery to generate γ-aminobutyric acid (GABA) from glutamate, glutamine, and succinate. Consistent with the genome analysis, we found that B. dentium secreted GABA in a fully defined microbial media and elevated fecal GABA in B. dentium mono-associated mice compared to germ-free controls. We also examined the tyrosine/dopamine pathway and found that B. dentium could synthesize tyrosine, but could not generate L-dopa, dopamine, norepinephrine, or epinephrine. In vivo, we found that B. dentium mono-associated mice had elevated levels of tyrosine in the feces and brain. CONCLUSIONS: These data indicate that B. dentium can contribute to in vivo neurotransmitter regulation.


Asunto(s)
Bifidobacterium/metabolismo , Neurotransmisores/metabolismo , Animales , Infecciones por Bifidobacteriales/metabolismo , Encéfalo/metabolismo , Calibración , Cromatografía Liquida , Microbioma Gastrointestinal , Genoma , Intestinos/patología , Masculino , Ratones , Microbiota , Espectrometría de Masas en Tándem , Tirosina/metabolismo
11.
Gut Microbes ; 13(1): 1-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33985416

RESUMEN

Endoplasmic reticulum (ER) stress compromises the secretion of MUC2 from goblet cells and has been linked with inflammatory bowel disease (IBD). Although Bifidobacterium can beneficially modulate mucin production, little work has been done investigating the effects of Bifidobacterium on goblet cell ER stress. We hypothesized that secreted factors from Bifidobacterium dentium downregulate ER stress genes and modulates the unfolded protein response (UPR) to promote MUC2 secretion. We identified by mass spectrometry that B. dentium secretes the antioxidant γ-glutamylcysteine, which we speculate dampens ER stress-mediated ROS and minimizes ER stress phenotypes. B. dentium cell-free supernatant and γ-glutamylcysteine were taken up by human colonic T84 cells, increased glutathione levels, and reduced ROS generated by the ER-stressors thapsigargin and tunicamycin. Moreover, B. dentium supernatant and γ-glutamylcysteine were able to suppress NF-kB activation and IL-8 secretion. We found that B. dentium supernatant, γ-glutamylcysteine, and the positive control IL-10 attenuated the induction of UPR genes GRP78, CHOP, and sXBP1. To examine ER stress in vivo, we first examined mono-association of B. dentium in germ-free mice which increased MUC2 and IL-10 levels compared to germ-free controls. However, no changes were observed in ER stress-related genes, indicating that B. dentium can promote mucus secretion without inducing ER stress. In a TNBS-mediated ER stress model, we observed increased levels of UPR genes and pro-inflammatory cytokines in TNBS treated mice, which were reduced with addition of live B. dentium or γ-glutamylcysteine. We also observed increased colonic and serum levels of IL-10 in B. dentium- and γ-glutamylcysteine-treated mice compared to vehicle control. Immunostaining revealed retention of goblet cells and mucus secretion in both B. dentium- and γ-glutamylcysteine-treated animals. Collectively, these data demonstrate positive modulation of the UPR and MUC2 production by B. dentium-secreted compounds.


Asunto(s)
Bifidobacterium/metabolismo , Colitis/microbiología , Colitis/fisiopatología , Colon/inmunología , Dipéptidos/metabolismo , Estrés del Retículo Endoplásmico , Células Caliciformes/inmunología , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colon/microbiología , Colon/fisiopatología , Chaperón BiP del Retículo Endoplásmico , Microbioma Gastrointestinal , Humanos , Masculino , Ratones , Mucina 2/genética , Mucina 2/inmunología , Ácido Trinitrobencenosulfónico/efectos adversos
12.
BMC Microbiol ; 21(1): 154, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030655

RESUMEN

BACKGROUND: Bifidobacteria are commensal microbes of the mammalian gastrointestinal tract. In this study, we aimed to identify the intestinal colonization mechanisms and key metabolic pathways implemented by Bifidobacterium dentium. RESULTS: B. dentium displayed acid resistance, with high viability over a pH range from 4 to 7; findings that correlated to the expression of Na+/H+ antiporters within the B. dentium genome. B. dentium was found to adhere to human MUC2+ mucus and harbor mucin-binding proteins. Using microbial phenotyping microarrays and fully-defined media, we demonstrated that in the absence of glucose, B. dentium could metabolize a variety of nutrient sources. Many of these nutrient sources were plant-based, suggesting that B. dentium can consume dietary substances. In contrast to other bifidobacteria, B. dentium was largely unable to grow on compounds found in human mucus; a finding that was supported by its glycosyl hydrolase (GH) profile. Of the proteins identified in B. dentium by proteomic analysis, a large cohort of proteins were associated with diverse metabolic pathways, indicating metabolic plasticity which supports colonization of the dynamic gastrointestinal environment. CONCLUSIONS: Taken together, we conclude that B. dentium is well adapted for commensalism in the gastrointestinal tract.


Asunto(s)
Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Ácidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bifidobacterium/genética , Bifidobacterium/crecimiento & desarrollo , Tracto Gastrointestinal/fisiología , Genoma Bacteriano , Glucosa/metabolismo , Humanos , Simbiosis
13.
PLoS One ; 16(5): e0251231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33956889

RESUMEN

BACKGROUND: Gastrointestinal problems affect the health and quality of life of individuals with Rett syndrome (RTT) and pose a medical hardship for their caregivers. We hypothesized that the variability in the RTT phenotype contributes to the dysbiosis of the gut microbiome and metabolome in RTT, predisposing these individuals to gastrointestinal dysfunction. OBJECTIVES: We characterized the gut bacterial microbiome and metabolome in girls and young women with RTT (n = 44) and unaffected controls (n = 21), and examined the relation between the composition of the microbiome and variations in the RTT phenotype. METHODS: Demographics and clinical information, including growth and anthropometric measurements, pubertal status, symptoms, clinical severity score, bowel movement, medication use, and dietary intakes were collected from the participants. Fecal samples were collected for analysis of the gut microbiome using Illumina MiSeq-based next-generation sequencing of the 16S rRNA gene followed by bioinformatics analysis of microbial composition, diversity, and community structure. Selected end-products of microbial protein metabolism were characterized by liquid chromatography-mass spectrometry. RESULTS: The gut bacterial microbiome differed within the RTT cohort based on pubertal status (p<0.02) and clinical severity scores (p<0.02) of the individuals and the type of diet (p<0.01) consumed. Although the composition of the gut microbiome did not differ between RTT and unaffected individuals, concentrations of protein end-products of the gut bacterial metabolome, including γ-aminobutyric acid (GABA) (p<0.001), tyrosine (p<0.02), and glutamate (p<0.06), were lower in the RTT cohort. Differences in the microbiome within RTT groups, based on symptomatic anxiety, hyperventilation, abdominal distention, or changes in stool frequency and consistency, were not detected. CONCLUSIONS: Although variability in the RTT phenotype contributes to the dysbiosis of the gut microbiome, we presently cannot infer causality between gut bacterial dysbiosis and gastrointestinal dysfunction. Nevertheless, alterations in the gut metabolome may provide clues to the pathophysiology of gastrointestinal problems in RTT.


Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Síndrome de Rett/microbiología , Adolescente , Adulto , Niño , Preescolar , Heces/química , Heces/microbiología , Femenino , Cromatografía de Gases y Espectrometría de Masas , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/metabolismo , Enfermedades Gastrointestinales/microbiología , Microbioma Gastrointestinal/genética , Humanos , Fenotipo , ARN Ribosómico 16S/genética , Síndrome de Rett/complicaciones , Síndrome de Rett/metabolismo , Análisis de Secuencia de ADN , Índice de Severidad de la Enfermedad , Adulto Joven
14.
Am J Pathol ; 191(4): 704-719, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33516788

RESUMEN

The intestinal microbiota influences the development and function of the mucosal immune system. However, the exact mechanisms by which commensal microbes modulate immunity is not clear. We previously demonstrated that commensal Bacteroides ovatus ATCC 8384 reduces mucosal inflammation. Herein, we aimed to identify immunomodulatory pathways employed by B. ovatus. In germ-free mice, mono-association with B. ovatus shifted the CD11b+/CD11c+ and CD103+/CD11c+ dendritic cell populations. Because indole compounds are known to modulate dendritic cells, B. ovatus cell-free supernatant was screened for tryptophan metabolites by liquid chromatography-tandem mass spectrometry and larger quantities of indole-3-acetic acid were detected. Analysis of cecal and fecal samples from germ-free and B. ovatus mono-associated mice confirmed that B. ovatus could elevate indole-3-acetic acid concentrations in vivo. Indole metabolites have previously been shown to stimulate immune cells to secrete the reparative cytokine IL-22. Addition of B. ovatus cell-free supernatant to immature bone marrow-derived dendritic cells stimulated IL-22 secretion. The ability of IL-22 to drive repair in the intestinal epithelium was confirmed using a physiologically relevant human intestinal enteroid model. Finally, B. ovatus shifted the immune cell populations in trinitrobenzene sulfonic acid-treated mice and up-regulated colonic IL-22 expression, effects that correlated with decreased inflammation. Our data suggest that B. ovatus-produced indole-3-acetic acid promotes IL-22 production by immune cells, yielding beneficial effects on colitis.


Asunto(s)
Bacteroides/efectos de los fármacos , Colon/metabolismo , Inflamación/tratamiento farmacológico , Interleucinas/metabolismo , Ácido Trinitrobencenosulfónico/farmacología , Animales , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/efectos de los fármacos , Citocinas/metabolismo , Sulfato de Dextran/metabolismo , Humanos , Inflamación/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ratones , Interleucina-22
15.
Cell Mol Gastroenterol Hepatol ; 11(1): 221-248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32795610

RESUMEN

BACKGROUND & AIMS: The human gut microbiota can regulate production of serotonin (5-hydroxytryptamine [5-HT]) from enterochromaffin cells. However, the mechanisms underlying microbial-induced serotonin signaling are not well understood. METHODS: Adult germ-free mice were treated with sterile media, live Bifidobacterium dentium, heat-killed B dentium, or live Bacteroides ovatus. Mouse and human enteroids were used to assess the effects of B dentium metabolites on 5-HT release from enterochromaffin cells. In vitro and in vivo short-chain fatty acids and 5-HT levels were assessed by mass spectrometry. Expression of tryptophan hydroxylase, short-chain fatty acid receptor free fatty acid receptor 2, 5-HT receptors, and the 5-HT re-uptake transporter (serotonin transporter) were assessed by quantitative polymerase chain reaction and immunostaining. RNA in situ hybridization assessed 5-HT-receptor expression in the brain, and 5-HT-receptor-dependent behavior was evaluated using the marble burying test. RESULTS: B dentium mono-associated mice showed increased fecal acetate. This finding corresponded with increased intestinal 5-HT concentrations and increased expression of 5-HT receptors 2a, 4, and serotonin transporter. These effects were absent in B ovatus-treated mice. Application of acetate and B dentium-secreted products stimulated 5-HT release in mouse and human enteroids. In situ hybridization of brain tissue also showed significantly increased hippocampal expression of 5-HT-receptor 2a in B dentium-treated mice relative to germ-free controls. Functionally, B dentium colonization normalized species-typical repetitive and anxiety-like behaviors previously shown to be linked to 5-HT-receptor 2a. CONCLUSIONS: These data suggest that B dentium, and the bacterial metabolite acetate, are capable of regulating key components of the serotonergic system in multiple host tissues, and are associated with a functional change in adult behavior.


Asunto(s)
Bifidobacterium/metabolismo , Eje Cerebro-Intestino/fisiología , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped/fisiología , Serotonina/metabolismo , Acetatos/metabolismo , Animales , Conducta Animal/fisiología , Bifidobacterium/aislamiento & purificación , Técnicas de Cultivo de Célula , Células Enterocromafines/metabolismo , Vida Libre de Gérmenes , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Modelos Animales , Organoides , Receptores de Serotonina/metabolismo
16.
Gut Microbes ; 12(1): 1788898, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32804011

RESUMEN

Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.


Asunto(s)
Clostridioides difficile/efectos de los fármacos , Gliceraldehído/análogos & derivados , Propano/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/farmacología , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Sinergismo Farmacológico , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Gliceraldehído/metabolismo , Gliceraldehído/farmacología , Humanos , Limosilactobacillus reuteri/metabolismo , Organoides/efectos de los fármacos , Organoides/microbiología , Estrés Oxidativo/efectos de los fármacos , Probióticos/metabolismo , Propano/metabolismo , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/crecimiento & desarrollo
17.
J Microbiol Methods ; 177: 106020, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795635

RESUMEN

Recently, an opportunity to perform a broad ruggedness assessment of our liquid chromatography-tandem mass spectrometry (LC-MS/MS) system presented itself during the analytical planning phase of a large-scale human fecal microbiome study. The specific aim of this project was to study the microbial-mediated metabolism of a targeted set of bile acids/salts by mixed bacterial communities cultured from the feces of 12 healthy volunteers when grown in a custom growth medium and following exposure to different clinically-relevant antibiotics. The magnitude of this study offered a rare opportunity to significantly stress procedures and LC-MS/MS system components comprised in our bile acid/salt targeted metabolomics method. With this second specific aim in mind, we modified the sample analysis plan to include a series of figure-of-merit (FoM)-based tests that are commonly used in regulated bioanalytical labs to assess LC and MS system ruggedness for a specific assay - these FoM-based testing parameters were monitored continuously over the course of sample analysis and the results are presented in this report. In total, the assessment included 1206 sequential injections (180 calibration standards, 136 blank-internal standard samples, and 890 diluted medium samples) that took place over 8-days. Completion of the 8-days of non-stop sample analysis revealed no critical hardware or software failures, and the analysis of the FoM-based tests indicated no observable degradation of system performance over the number of samples and time tested. The FoM-based test metrics presented may be used as a template to assess the ruggedness of any LC-MS/MS-based targeted metabolomics workflow.


Asunto(s)
Técnicas Bacteriológicas/métodos , Cromatografía Liquida/métodos , Microbiota , Espectrometría de Masas en Tándem/métodos , Bacterias , Ácidos y Sales Biliares , Calibración , Heces , Humanos , Metabolómica , Sensibilidad y Especificidad
18.
MethodsX ; 7: 100951, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637329

RESUMEN

Due to the physicochemical properties of bile acids/salts (i.e., hydrophobic and ionizable), the application of reverse-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based methods are ideally suited for the measurement of these compounds in a host of microbiologically-relevant matrices. Here, we provide a detailed bioanalytical protocol that contains several modifications of a method previously described by Wegner et al. [1]. Briefly, this modified method exhibits the following advantages for the measurement of cholic acid (CA), taurocholic acid (TCA), and deoxycholic acid (DCA) in microbiome-relevant sample matrices: i) fecal sample processing has been streamlined by the elimination of lyophilization and manual homogenization steps; ii) the Sciex 6500 QTRAP hybrid triple-quadrupole/linear ion trap mass spectrometer has sufficient sensitivity to perform the measurement of bile acids/salts in negative ion mode - ammonium adducts of bile acids/salts are not required for detection; and, iii) assay throughput has been boosted by more than 5-fold by shortening the chromatographic duty cycle of a single sample injection from 45 min to 8.4 min. Recently, the method was used to perform 508 sequential injections (72 calibration standards, 52 blank-internal standard sample, and 368 MiniBioReactor Array (MBRA)-derived samples) from four separate batches over a 4-day time period.

19.
Am J Physiol Gastrointest Liver Physiol ; 318(6): G1042-G1053, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32390463

RESUMEN

The period during and immediately after weaning is an important developmental window when marked shifts in gut microbiota can regulate the maturation of the enteric nervous system (ENS). Because microbiota-derived signals that modulate ENS development are poorly understood, we examined the physiological impact of the broad spectrum of antibiotic, vancomycin-administered postweaning on colonic motility, neurochemistry of enteric neurons, and neuronal excitability. The functional impact of vancomycin on enteric neurons was investigated by Ca2+ imaging in Wnt1-Cre;R26R-GCaMP3 reporter mice to characterize alterations in the submucosal and the myenteric plexus, which contains the neuronal circuitry controlling gut motility. 16S rDNA sequencing of fecal specimens after oral vancomycin demonstrated significant deviations in microbiota abundance, diversity, and community composition. Vancomycin significantly increased the relative family rank abundance of Akkermansiaceae, Lactobacillaceae, and Enterobacteriaceae at the expense of Lachnospiraceae and Bacteroidaceae. In sharp contrast to neonatal vancomycin exposure, microbiota compositional shifts in weaned animals were associated with slower colonic migrating motor complexes (CMMCs) without mucosal serotonin biosynthesis being altered. The slowing of CMMCs is linked to disruptions in the neurochemistry of the underlying enteric circuitry. This included significant reductions in cholinergic and calbindin+ myenteric neurons, neuronal nitric oxide synthase+ submucosal neurons, neurofilament M+ enteric neurons, and increased proportions of cholinergic submucosal neurons. The antibiotic treatment also increased transmission and responsiveness in myenteric and submucosal neurons that may enhance inhibitory motor pathways, leading to slower CMMCs. Differential vancomycin responses during neonatal and weaning periods in mice highlight the developmental-specific impact of antibiotics on colonic enteric circuitry and motility.


Asunto(s)
Colon/inervación , Sistema Nervioso Entérico/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Vancomicina/farmacología , Animales , Antibacterianos/farmacología , Sistema Nervioso Entérico/fisiología , Femenino , Masculino , Ratones , Serotonina/biosíntesis
20.
J Neuroinflammation ; 17(1): 160, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32429999

RESUMEN

BACKGROUND: Risk of stroke-related morbidity and mortality increases significantly with age. Aging is associated with chronic, low-grade inflammation, which is thought to contribute to the poorer outcomes after stroke seen in the elderly. Histamine (HA) is a major molecular mediator of inflammation, and mast cells residing in the gut are a primary source of histamine. METHODS: Stroke was induced in male C57BL/6 J mice at 3 months (young) and 20 months (aged) of age. Role of histamine after stroke was examined using young (Yg) and aged (Ag) mice; mice underwent MCAO surgery and were euthanized at 6 h, 24 h, and 7 days post-ischemia; sham mice received the same surgery but no MCAO. In this work, we evaluated whether worsened outcomes after experimental stroke in aged mice were associated with age-related changes in mast cells, histamine levels, and histamine receptor expression in the gut, brain, and plasma. RESULTS: We found increased numbers of mast cells in the gut and the brain with aging. Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we demonstrate that stroke leads to increased numbers of gut mast cells and gut histamine receptor expression levels. These gut-centric changes are associated with elevated levels of HA and other pro-inflammatory cytokines including IL-6, G-CSF, TNF-α, and IFN-γ in the peripheral circulation. Our data also shows that post-stroke gut inflammation led to a significant reduction of mucin-producing goblet cells and a loss of gut barrier integrity. Lastly, gut inflammation after stroke is associated with changes in the composition of the gut microbiota as early as 24-h post-stroke. CONCLUSION: An important theme emerging from our results is that acute inflammatory events following ischemic insults in the brain persist longer in the aged mice when compared to younger animals. Taken together, our findings implicate mast cell activation and histamine signaling as a part of peripheral inflammatory response after ischemic stroke, which are profound in aged animals. Interfering with histamine signaling orally might provide translational value to improve stroke outcome.


Asunto(s)
Envejecimiento/patología , Histamina/metabolismo , Inflamación/patología , Intestinos/inmunología , Mastocitos/patología , Accidente Cerebrovascular/patología , Envejecimiento/inmunología , Animales , Microbioma Gastrointestinal , Histamina/inmunología , Inflamación/inmunología , Intestinos/microbiología , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Accidente Cerebrovascular/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...