Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Methods Enzymol ; 682: 1-16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36948698

RESUMEN

Receptor tyrosine kinases (RTKs) are transmembrane receptors activated by a wide diversity of growth factors, cytokines or hormones. They ensure multiple roles in cellular processes, including proliferation, differentiation and survival. They are also crucial drivers of development and progression of multiple cancer types, and represent important drug targets. Generally, ligand binding induces dimerization of RTK monomers, which induces auto-/transphosphorylation of tyrosine residues on the intracellular tails leading to the recruitment of adaptor proteins and modifying enzymes to promote and modulate various downstream signaling pathways. This chapter details easy, rapid, sensitive and versatile methods based on split Nanoluciferase complementation technology (NanoBiT) to monitor activation and modulation of two models of RTKs (EGFR and AXL) through the measurement of their dimerization and the recruitment of the adaptor protein Grb2 (SH2 domain-containing growth factor receptor-bound protein 2) and the receptor-modifying enzyme, the ubiquitin ligase Cbl.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Transducción de Señal , Transducción de Señal/fisiología , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Dominios Homologos src , Proteínas Portadoras/metabolismo , Tirosina/metabolismo , Fosforilación
3.
Environ Int ; 165: 107342, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714525

RESUMEN

The specific physiology and behaviour of children makes them particularly vulnerable to chemical exposure. Specific studies must therefore be conducted to understand the impact of pollution on children's health. Human biomonitoring is a reliable approach for exposure assessment, and hair, allowing the detection of parent chemicals and metabolites, and covering wider time windows than urine and blood is particularly adapted to study chronic exposure. The present study aims at assessing chemical exposure and investigating possible determinants of exposure in children living in Luxembourg. Hair samples were collected from 256 children below 13 y/o and tested for 153 compounds (140 pesticides, 4 PCBs, 7 BDEs and 2 bisphenols). Moreover, anthropometric parameters, information on diet, residence, and presence of pets at home was collected through questionnaires. Correlations, regressions, t-tests, PLS-DA and MANOVAs, were used to investigate exposure patterns. Twenty-nine to 88 (median = 61) compounds were detected per sample. The highest median concentration was observed for BPA (133.6 pg/mg). Twenty-three biomarkers were detected in ≥ 95% of the samples, including 13 in all samples (11 pesticides, BPA and BPS). Exposure was higher at younger ages (R2 = 0.57), and boys were more exposed to non-persistent pesticides than girls. Presence of persistent organic pollutants in most children suggests that exposure is still ongoing. Moreover, diet (e.g. imazalil: 0.33 pg/mg in organic, 1.15 pg/mg in conventional, p-value < 0.001), residence area (e.g. imidacloprid: 0.29 pg/mg in urban, 0.47 pg/mg in countryside, p-value = 0.03), and having pets (e.g. fipronil: 0.32 pg/mg in pets, 0.09 pg/mg in no pets, p-value < 0.001) were identified as determinants of exposure. The present study demonstrates that children are simultaneously exposed to multiple pollutants from different chemical classes, and confirms the suitability of hair to investigate exposure. These results set the basis for further investigations to better understand the determinants of chemical exposure in children.


Asunto(s)
Exposoma , Plaguicidas , Niño , Monitoreo del Ambiente/métodos , Femenino , Análisis de Cabello , Humanos , Luxemburgo , Masculino , Plaguicidas/análisis
4.
Nat Metab ; 4(4): 458-475, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437333

RESUMEN

The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Bacterias , Neoplasias Colorrectales/metabolismo , Formiatos , Fusobacterium nucleatum , Humanos , Ratones , Microambiente Tumoral
5.
Sci Total Environ ; 778: 146330, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030378

RESUMEN

BACKGROUND: The assessment of human exposure to fast-elimination endocrine disruptors (ED) such as phthalates, bisphenols or pesticides is usually based on urinary biomarkers. The variability of biomarkers concentration, due to rapid elimination from the body combined with frequent exposure is however pointed out as a major limitation to exposure assessment. Other matrices such as hair, less sensitive to short-term variations in the exposure, have been proposed as possible alternatives. Nevertheless, no study compared the information obtained from hair and urine respectively in a follow-up allowing to assess biomarkers variability over time in these two matrices, and to compare the correlation between them. METHODS: In the present study, hair and urine samples were collected from 16 volunteers over a 6 months follow-up. All in all, 92 hair samples and 805 urines samples were collected and analyzed for the presence of 16 phthalate metabolites, 4 bisphenols and 8 pesticides/metabolites. RESULTS: All the biomarkers analyzed were detected in at least one of the two matrices. 21 biomarkers were more frequently detected in hair, 6 in urine, and 1 was equivalent. Biomarkers intraclass correlation coefficients (ICC) ranged from 0.1 to 0.8 (ten above 0.4) in hair, and from 0.09 to 0.51 in urine (two above 0.4). The concentrations of biomarkers in hair and urine were significantly correlated for only one compound. CONCLUSION: This study highlights the complexity of assessing exposure to fast-elimination ED and suggests considering with caution the specificity of the matrix in data interpretation. The results document the respective advantages and limitations of urine and hair, and provide new insight in the understanding of the information provided by these biological matrices and their relevance for the assessment of human exposure to fast elimination contaminants. CAPSULE: 92 hair and 805 urine samples collected from 16 volunteers over 6 months, tested for phthalate metabolites, bisphenols and pesticides. 19 biomarkers (in hair) and 24 (in urine) were detected in >50% of the samples.


Asunto(s)
Disruptores Endocrinos , Ácidos Ftálicos , Monitoreo Biológico , Exposición a Riesgos Ambientales/análisis , Estudios de Seguimiento , Voluntarios Sanos , Humanos
7.
Trends Microbiol ; 28(5): 401-423, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32298617

RESUMEN

Mounting evidence from metagenomic analyses suggests that a state of pathological microbial imbalance or dysbiosis is prevalent in the gut of patients with colorectal cancer. Several bacterial taxa have been identified of which representative isolate cultures interact with human cancer cells in vitro and trigger disease pathways in animal models. However, how the complex interrelationships in dysbiotic communities may be involved in cancer pathogenesis remains a crucial question. Here, we provide a survey of current knowledge of the gut microbiome in colorectal cancer. Moving beyond observational studies, we outline new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome's role in cancer pathogenesis.


Asunto(s)
Bacterias/clasificación , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Disbiosis/microbiología , Interacciones Huésped-Patógeno/fisiología , Animales , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Humanos , Ratones
8.
Cancers (Basel) ; 12(2)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019056

RESUMEN

Colorectal cancer (CRC) is a leading cause of death among cancer patients. This heterogeneous disease is characterized by alterations in multiple molecular pathways throughout its development. Mutations in RAS, along with the mismatch repair gene deficiency, are currently routinely tested in clinics. Such biomarkers provide information for patient risk stratification and for the choice of the best treatment options. Nevertheless, reliable and powerful prognostic markers that can identify "high-risk" CRC patients, who might benefit from adjuvant chemotherapy, in early stages, are currently missing. To bridge this gap, genomic information has increasingly gained interest as a potential method for determining the risk of recurrence. However, due to several limitations of gene-based signatures, these have not yet been clinically implemented. In this review, we describe the different molecular markers in clinical use for CRC, highlight new markers that might become indispensable over the next years, discuss recently developed gene expression-based tests and highlight the challenges in biomarker research.

9.
Autophagy ; 16(8): 1436-1452, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31775562

RESUMEN

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enrichedpatient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients. ABBREVIATIONS: ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CQ: chloroquine; CSC: cancer stem cells; CRC: colorectal cancer; HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PRKC/PKC: protein kinase C; SQSTM1/p62: sequestosome 1; TICs: tumor-initiating cells.


Asunto(s)
Carcinogénesis/patología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Proteínas del Citoesqueleto/metabolismo , Progresión de la Enfermedad , Hipoxia/complicaciones , Proteína Quinasa C/metabolismo , Transducción de Señal , Animales , Autofagosomas/metabolismo , Autofagia , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/metabolismo , Autorrenovación de las Células , Colon/patología , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fenotipo , Fosforilación
10.
Int J Cancer ; 146(4): 895-905, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30734283

RESUMEN

The tumor microenvironment has been identified as one of the driving factors of tumor progression and invasion. Inside this microenvironment, cancer-associated fibroblasts (CAFs), a type of perpetually activated fibroblasts, have been implicated to have a strong tumor-modulating effect and play a key role in areas such as drug resistance. Identification of CAFs has typically been carried based on the expression of various "CAF markers", such as fibroblast activation protein alpha (FAP) and alpha smooth muscle actin (αSMA), which separates them from the larger pool of fibroblasts present in the body. However, as outlined in this Review, the expression of various commonly used fibroblast markers is extremely heterogeneous and varies strongly between different CAF subpopulations. As such, novel selection methods based on cellular function, as well as further characterizing research, are vital for the standardization of CAF identification in order to improve the cross-applicability of different research studies in the field. The aim of this review is to give a thorough overview of the commonly used fibroblast markers in the field and their various strengths and, more importantly, their weaknesses, as well as to highlight potential future avenues for CAF identification and targeting.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias/patología , Microambiente Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Separación Celular/métodos , Progresión de la Enfermedad , Citometría de Flujo/métodos , Humanos , Invasividad Neoplásica/patología , Neoplasias/tratamiento farmacológico
11.
Arch Toxicol ; 93(10): 2849-2862, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31428841

RESUMEN

Human biomonitoring provides information about chemicals measured in biological matrices, but their interpretation remains uncertain because of pharmacokinetic (PK) interactions. This study examined the PKs in blood from Long-Evans rats after a single oral dose of 0.4 mg/kg bw of each pesticide via a mixture of the 17 pesticides most frequently measured in humans. These pesticides are ß-endosulfan; ß-hexachlorocyclohexane [ß-HCH]; γ-hexachlorocyclohexane [γ-HCH]; carbofuran; chlorpyrifos; cyhalothrin; cypermethrin; diazinon; dieldrin; diflufenican; fipronil; oxadiazon; pentachlorophenol [PCP]; permethrin; 1,1-dichloro-2,2bis(4-chlorophenyl)ethylene [p,p'-DDE]; 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane [p,p'-DDT]; and trifluralin. We collected blood at 10 min to 48-h timepoints in addition to one sample before gavage (for a control). We used GS-MS/MS to measure the pesticide (parents and major metabolites) concentrations in plasma, determined the PK parameters from 20 sampling timepoints, and analyzed the food, litter, and cardboard in the rats' environment for pesticides. We detected many parents and metabolites pesticides in plasma control (e.g., diethyl phosphate [DEP]; PCP; 3-phenoxybenzoic acid [3-PBA]; 3,5,6-trichloro-2-pyridinol [TCPy], suggesting pre-exposure contamination. The PK values post-exposure showed that the AUC0-∞ and Cmax were highest for TCPy and PCP; ß-endosulfan, permethrin, and trifluralin presented the lowest values. Terminal T1/2 and MRT for γ-HCH and ß-HCH ranged from 74.5 h to 117.1 h; carbofuran phenol presented the shortest values with 4.3 h and 4.8 h. These results present the first PK values obtained through a realistic pattern applied to a mixture of 17 pesticides to assess exposure. This study also highlights the issues of background exposure and the need to work with a relevant mixture found in human matrices.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Plaguicidas/farmacocinética , Administración Oral , Animales , Monitoreo Biológico , Cromatografía de Gases , Femenino , Humanos , Ratas , Ratas Long-Evans , Espectrometría de Masas en Tándem
12.
Cells ; 8(6)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31159361

RESUMEN

Colorectal cancer (CRC), the second most common cause of cancer mortality in the Western world, is a highly heterogeneous disease that is driven by a rare subpopulation of tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Over the past few years, a plethora of different approaches, aimed at identifying and eradicating these self-renewing TICs, have been described. A focus on the metabolic and bioenergetic differences between TICs and less aggressive differentiated cancer cells has thereby emerged as a promising strategy to specifically target the tumorigenic cell compartment. Extrinsic factors, such as nutrient availability or tumor hypoxia, are known to influence the metabolic state of TICs. In this review, we aim to summarize the current knowledge on environmental stress factors and how they affect the metabolism of TICs, with a special focus on microRNA (miRNA)- and hypoxia-induced effects on colon TICs.


Asunto(s)
MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Hipoxia de la Célula , Progresión de la Enfermedad , Humanos , Ácido Láctico/metabolismo , MicroARNs/genética
13.
Cell Rep ; 27(5): 1621-1632.e9, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31042485

RESUMEN

By modulating the human gut microbiome, prebiotics and probiotics (combinations of which are called synbiotics) may be used to treat diseases such as colorectal cancer (CRC). Methodological limitations have prevented determining the potential combinatorial mechanisms of action of such regimens. We expanded our HuMiX gut-on-a-chip model to co-culture CRC-derived epithelial cells with a model probiotic under a simulated prebiotic regimen, and we integrated the multi-omic results with in silico metabolic modeling. In contrast to individual prebiotic or probiotic treatments, the synbiotic regimen caused downregulation of genes involved in procarcinogenic pathways and drug resistance, and reduced levels of the oncometabolite lactate. Distinct ratios of organic and short-chain fatty acids were produced during the simulated regimens. Treatment of primary CRC-derived cells with a molecular cocktail reflecting the synbiotic regimen attenuated self-renewal capacity. Our integrated approach demonstrates the potential of modeling for rationally formulating synbiotics-based treatments in the future.


Asunto(s)
Neoplasias Colorrectales/microbiología , Simulación por Computador , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Mucosa Intestinal/microbiología , Células CACO-2 , Células Cultivadas , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Lacticaseibacillus rhamnosus/patogenicidad , Prebióticos/microbiología , Probióticos/farmacología
14.
EBioMedicine ; 43: 98-106, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31126892

RESUMEN

BACKGROUND: Metabolic rewiring allows cancer cells to sustain high proliferation rates. Thus, targeting only the cancer-specific cellular metabolism will safeguard healthy tissues. METHODS: We developed the very efficient FASTCORMICS RNA-seq workflow (rFASTCORMICS) to build 10,005 high-resolution metabolic models from the TCGA dataset to capture metabolic rewiring strategies in cancer cells. Colorectal cancer (CRC) was used as a test case for a repurposing workflow based on rFASTCORMICS. FINDINGS: Alternative pathways that are not required for proliferation or survival tend to be shut down and, therefore, tumours display cancer-specific essential genes that are significantly enriched for known drug targets. We identified naftifine, ketoconazole, and mimosine as new potential CRC drugs, which were experimentally validated. INTERPRETATION: The here presented rFASTCORMICS workflow successfully reconstructs a metabolic model based on RNA-seq data and successfully predicted drug targets and drugs not yet indicted for colorectal cancer. FUND: This study was supported by the University of Luxembourg (IRP grant scheme; R-AGR-0755-12), the Luxembourg National Research Fund (FNR PRIDE PRIDE15/10675146/CANBIO), the Fondation Cancer (Luxembourg), the European Union's Horizon2020 research and innovation programme under the Marie Sklodowska- Curie grant agreement No 642295 (MEL-PLEX), and the German Federal Ministry of Education and Research (BMBF) within the project MelanomSensitivity (BMBF/BM/7643621).


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor , Biología Computacional , Descubrimiento de Drogas , Metabolismo Energético/efectos de los fármacos , Terapia Molecular Dirigida , Algoritmos , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Reproducibilidad de los Resultados , Flujo de Trabajo
15.
Cancer Lett ; 450: 32-41, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30790680

RESUMEN

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including colorectal carcinoma. Intratumoral hypoxia, i.e. reduced oxygen supply following uncontrolled proliferation of cancer cells, is thought to support TIC activity by inducing specific hypoxia-responsive mechanisms that are not yet entirely understood. Using previously established and fully characterized patient-derived TIC cultures, we could observe increased sphere and colony formation under hypoxic conditions. Mechanistically, microRNA (miRNA)-profiling experiments allowed us to identify miR-215 as one of the main hypoxia-induced miRNAs in primary colon TICs. Through stable overexpression of miR-215, followed by a set of functional in vitro and in vivo investigations, miR-215 was pinpointed as a negative feedback regulator, working against the TIC-promoting effects of hypoxia. Furthermore, we could single out LGR5, a bona fide marker of non-neoplastic intestinal stem cells, as a downstream target of hypoxia/miR-215 signaling. The strong tumor- and TIC-suppressor potential of miR-215 and the regulatory role of the hypoxia/miR-215/LGR5 axis may thus represent interesting points of attack for the development of innovative anti-CSC therapy approaches.


Asunto(s)
Hipoxia de la Célula/fisiología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Neoplasias del Colon/genética , Genes Supresores de Tumor , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , MicroARNs/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Esferoides Celulares , Células Tumorales Cultivadas , Regulación hacia Arriba
16.
J Leukoc Biol ; 104(5): 969-985, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30040142

RESUMEN

Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-γ-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-γ, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-γ. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other TH 1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine pre-stimulation-mimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation-induced cachexia-can be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27 with blocking antibodies against PD-L1 or/and IL6-type cytokines.


Asunto(s)
Antígeno B7-H1/inmunología , Interleucina-6/inmunología , Interleucinas/inmunología , Neoplasias/inmunología , Factor de Transcripción STAT1/inmunología , Escape del Tumor/inmunología , Antígeno B7-H1/antagonistas & inhibidores , Línea Celular Tumoral , Humanos , Interleucina-6/antagonistas & inhibidores , Transducción de Señal/inmunología
17.
Cancer Res ; 78(14): 3793-3808, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29748374

RESUMEN

The vast majority of colorectal cancer-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key prerequisite to improve future treatment options. With this aim, we took advantage of different colorectal cancer cell lines and recently established primary cultures enriched in colon cancer stem cells, also known as tumor-initiating cells (TIC), to identify genes and miRNAs with regulatory functions in colorectal cancer progression. We show here that metastasis-derived TICs display increased capacity for self-renewal, TGFß signaling activity, and reduced expression of the miR-371∼373 cluster compared with nonmetastatic cultures. TGFß receptor 2 (TGFBR2) and aldehyde dehydrogenase A1 (ALDH1A1) were identified as important target genes of the miR-371∼373 cluster. In addition, TGFBR2 repression, either by direct knockdown or indirectly via overexpression of the entire miR-371∼373 cluster, decreased tumor-initiating potential of TICs. We observed significantly reduced in vitro self-renewal activity as well as lowered tumor initiation and metastatic outgrowth capacity in vivo following stable overexpression of the miR-371∼373 cluster in different colon TIC cultures. Inhibitor of DNA binding 1 (ID1) was affected by both TGFBR2 and miR-371∼373 cluster alterations. Functional sphere and tumor formation as well as metastatic dissemination assays validated the link between miR-371∼373 and ID1. Altogether, our results establish the miR-371∼373/TGFBR2/ID1 signaling axis as a novel regulatory mechanism of TIC self-renewal and metastatic colonization.Significance: These findings establish the miR-371∼373/TGFBR2/ID1 signaling axis as a novel mechanism regulating self-renewal of tumor-initiating cell and metastatic colonization, potentially opening new concepts for therapeutic targeting of cancer metastasis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3793/F1.large.jpg Cancer Res; 78(14); 3793-808. ©2018 AACR.


Asunto(s)
Neoplasias del Colon/genética , Neoplasias del Colon/patología , Proteína 1 Inhibidora de la Diferenciación/genética , MicroARNs/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Transducción de Señal/genética , Animales , Línea Celular Tumoral , Autorrenovación de las Células/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Células HT29 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/patología
18.
Br J Cancer ; 117(11): 1689-1701, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29024942

RESUMEN

BACKGROUND: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognised to have a major role in trafficking and polarisation of cells, have recently been reported to be closely associated with several types of cancer and might thus serve as potential prognostic markers in the context of CRC. METHODS: We used a previously established meta-analysis of publicly available gene expression data to analyse the expression of different members of the Myosin V family, namely MYO5A, 5B, and 5C, in CRC. Using laser-microdissected material as well as tissue microarrays from paired human CRC samples, we validated both RNA and protein expression of Myosin Vb (MYO5B) and its known adapter proteins (RAB8A and RAB25) in an independent patient cohort. Finally, we assessed the prognostic value of both MYO5B and its adapter-coupled combinatorial gene expression signatures. RESULTS: The meta-analysis as well as an independent patient cohort study revealed a methylation-independent loss of MYO5B expression in CRC that matched disease progression. Although MYO5B mutations were identified in a small number of patients, these cannot be solely responsible for the common downregulation observed in CRC patients. Significantly, CRC patients with low MYO5B expression displayed shorter overall, disease-, and metastasis-free survival, a trend that was further reinforced when RAB8A expression was also taken into account. CONCLUSIONS: Our data identify MYO5B as a powerful prognostic biomarker in CRC, especially in early stages (stages I and II), which might help stratifying patients with stage II for adjuvant chemotherapy.


Asunto(s)
Neoplasias Colorrectales/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Recurrencia Local de Neoplasia/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Biología Computacional , Metilación de ADN , Transición Epitelial-Mesenquimal , Humanos , Mutación , Cadenas Pesadas de Miosina/análisis , Miosina Tipo V/análisis , Pronóstico , Análisis de Matrices Tisulares , Proteínas de Unión al GTP rab/genética
19.
Mol Cancer ; 16(1): 40, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28209178

RESUMEN

Most cancers contain a subpopulation of highly tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Targeting TICs may be essential to achieve cure, because of their self-renewal and tumorigenic properties as well as their resistance to conventional therapies. Despite significant advances in TIC biology, their isolation and identification remain largely disputed and incompletely established. In this review, we discuss the latest developments in isolation and culturing approaches of TICs, with focus on colorectal cancer (CRC). We feature recent findings on TIC-relevant signaling pathways and the metabolic identity of TICs, as well as their current clinical implications. Lastly, we highlight the influence of inter- and intra-tumoral heterogeneity on TIC function and targeting approaches.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neoplasias Colorrectales/patología , Células Madre Neoplásicas/citología , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Heterogeneidad Genética , Humanos , Terapia Molecular Dirigida , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Transducción de Señal , Células Tumorales Cultivadas
20.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 516-526, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27939431

RESUMEN

Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in patients with hepatitis B, and sera of hepatocellular carcinoma (HCC) patients contain significantly elevated levels of IL27 compared to healthy controls or patients with hepatitis and/or liver cirrhosis. In this study, we show that IL27 induces STAT1 and STAT3 phosphorylation in 5 HCC lines and 3 different types of non-transformed liver cells. We were especially interested in the relevance of the IL27-induced STAT3 activation in liver cells. Thus, we compared the IL27 responses with those induced by IFNγ (STAT1-dominated response) or IL6-type cytokines (IL6, hyper-IL6 (hy-IL6) or OSM) (STAT3-dominated response) by microarray analysis and find that in HCC cells, IL27 induces an IFNγ-like, STAT1-dependent transcriptional response, but we do not find an effective STAT3-dependent response. Validation experiments corroborate the finding from the microarray evaluation. Interestingly, the availability of STAT1 seems critical in the shaping of the IL27 response, as the siRNA knock-down of STAT1 revealed the ability of IL27 to induce the acute-phase protein γ-fibrinogen, a typical IL6 family characteristic. Moreover, we describe a crosstalk between the signaling of IL6-type cytokines and IL27: responses to the gp130-engaging cytokine IL27 (but not those to IFNs) can be inhibited by IL6-type cytokine pre-stimulation, likely by a SOCS3-mediated mechanism. Thus, IL27 recapitulates IFNγ responses in liver cells, but differs from IFNγ by its sensitivity to SOCS3 inhibition.


Asunto(s)
Hepatocitos/inmunología , Interferón gamma/genética , Interleucina-6/genética , Interleucinas/inmunología , Proteína 3 Supresora de la Señalización de Citocinas/inmunología , Línea Celular Tumoral , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/inmunología , Fibrinógeno/genética , Fibrinógeno/inmunología , Regulación de la Expresión Génica , Hepatocitos/patología , Humanos , Interferón gamma/inmunología , Interleucina-12/genética , Interleucina-12/inmunología , Interleucina-6/inmunología , Interleucinas/genética , Análisis por Micromatrices , Fosforilación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/inmunología , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA