Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 6(2): e16887, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21365011

RESUMEN

Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.


Asunto(s)
Enfermedades de los Animales/epidemiología , Antozoos/crecimiento & desarrollo , Densidad de Población , Animales , Antozoos/clasificación , Ecosistema , Ambiente , Trastornos del Crecimiento/epidemiología , Actividades Humanas/estadística & datos numéricos , Humanos , Océano Índico , Océano Pacífico , Prevalencia
2.
PLoS One ; 6(2): e16893, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21347317

RESUMEN

BACKGROUND: Declining water quality coupled with the effects of climate change are rapidly increasing coral diseases on reefs worldwide, although links between coral diseases and environmental parameters remain poorly understood. This is the first study to document a correlation between coral disease and water quality on an inshore reef. METHODOLOGY/PRINCIPAL FINDINGS: The temporal dynamics of the coral disease atramentous necrosis (AN) was investigated over two years within inshore populations of Montipora aequituberculata in the central Great Barrier Reef, in relation to rainfall, salinity, temperature, water column chlorophyll a, suspended solids, sedimentation, dissolved organic carbon, and particulate nitrogen, phosphorus and organic carbon. Overall, mean AN prevalence was 10-fold greater during summer wet seasons than winter dry seasons. A 2.5-fold greater mean disease abundance was detected during the summer of 2009 (44 ± SE 6.7 diseased colonies per 25 m(2)), when rainfall was 1.6-fold greater than in the summer of 2008. Two water quality parameters explained 67% of the variance in monthly disease prevalence in a Partial Least Squares regression analysis; disease abundance was negatively correlated with salinity (R2 = -0.6) but positively correlated with water column particulate organic carbon concentration (R2 = 0.32). Seasonal temperature patterns were also positively correlated with disease abundance, but explained only a small portion of the variance. CONCLUSIONS/SIGNIFICANCE: The results suggest that rainfall and associated runoff may facilitate seasonal disease outbreaks, potentially by reducing host fitness or by increasing pathogen virulence due to higher availability of nutrients and organic matter. In the future, rainfall and seawater temperatures are likely to increase due to climate change which may lead to decreased health of inshore reefs.


Asunto(s)
Antozoos , Arrecifes de Coral , Necrosis/etiología , Lluvia , Estaciones del Año , Agua/efectos adversos , Animales , Análisis de los Mínimos Cuadrados
3.
Dis Aquat Organ ; 87(1-2): 105-15, 2009 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20095246

RESUMEN

In the present study we investigated inter-annual coral disease dynamics, in situ disease progression rates, and disease-associated coral tissue mortality in the Wakatobi Marine National Park (WMNP) situated in the coral triangle in South-East Sulawesi, Indonesia. In 2005, only 2 known syndromes were recorded within the sampling area transect surveys: white syndrome (WS; 0.42% prevalence) and growth anomalies (GA; 0.15% prevalence), whilst 4 diseases were recorded in 2007: WS (0.19%), Porites ulcerative white spot disease (PUWS; 0.08%), GA (0.05%) and black band disease (BBD; 0.02%). Total disease prevalence decreased from 0.57% in 2005 to 0.33% in 2007. In addition to prevalence surveys, in situ progression rates of 4 diseases were investigated in 2007: BBD on Pachyseris foliosa, P. rugosa and Diploastrea heliopora, WS on Acropora clathrata, and brown band (BrB) and skeletal eroding band (SEB) diseases on Acropora pulchra. BrB and WS had the highest progression rates, 1.2 +/- 0.36 and 1.1 +/- 0.07 cm d(-1), respectively, indicating that diseases may have a significant impact on local Acropora populations. BBD had the lowest progression rate (0.39 +/- 0.14 cm d(-1)). WS caused the most severe recorded total tissue mortality: 53 923 cm2 over a period of 36 d. Sedimentation and coral cover were studied and a highly significant drop in coral cover was observed. This study provides the first documentation of spatio-temporal coral disease dynamics from Indonesia. Despite low total disease prevalence, progression rates comparable to the ones observed in the Caribbean and Australia indicate that diseases may threaten the reef framework in some locations and add to the degradation of coral reefs in a region already at high risk from anthropogenic impacts.


Asunto(s)
Antozoos/microbiología , Conservación de los Recursos Naturales , Animales , Ecosistema , Indonesia , Océanos y Mares , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...