Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39326413

RESUMEN

How phenotypic diversity originates and persists within populations are classic puzzles in evolutionary biology. While balanced polymorphisms segregate within many species, it remains rare for both the genetic basis and the selective forces to be known, leading to an incomplete understanding of many classes of traits under balancing selection. Here, we uncover the genetic architecture of a balanced sexual mimicry polymorphism and identify behavioral mechanisms that may be involved in its maintenance in the swordtail fish Xiphophorus birchmanni. We find that ∼40% of X. birchmanni males develop a "false gravid spot," a melanic pigmentation pattern that mimics the "pregnancy spot" associated with sexual maturity in female live-bearing fish. Using genome-wide association mapping, we detect a single intergenic region associated with variation in the false gravid spot phenotype, which is upstream of kitlga, a melanophore patterning gene. By performing long-read sequencing within and across populations, we identify complex structural rearrangements between alternate alleles at this locus. The false gravid spot haplotype drives increased allele-specific expression of kitlga, which provides a mechanistic explanation for the increased melanophore abundance that causes the spot. By studying social interactions in the laboratory and in nature, we find that males with the false gravid spot experience less aggression; however, they also receive increased attention from other males and are disdained by females. These behavioral interactions may contribute to the maintenance of this phenotypic polymorphism in natural populations. We speculate that structural variants affecting gene regulation may be an underappreciated driver of balanced polymorphisms across diverse species.

2.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659793

RESUMEN

One of the mechanisms that can lead to the formation of new species occurs through the evolution of reproductive barriers. However, recent research has demonstrated that hybridization has been pervasive across the tree of life even in the presence of strong barriers. Swordtail fishes (genus Xiphophorus) are an emerging model system for studying the interface between these barriers and hybridization. We document overlapping mechanisms that act as barriers between closely related species, X. birchmanni and X. cortezi, by combining genomic sequencing from natural hybrid populations, artificial crosses, behavioral assays, sperm performance, and developmental studies. We show that strong assortative mating plays a key role in maintaining subpopulations with distinct ancestry in natural hybrid populations. Lab experiments demonstrate that artificial F1 crosses experience dysfunction: crosses with X. birchmanni females were largely inviable and crosses with X. cortezi females had a heavily skewed sex ratio. Using F2 hybrids we identify several genomic regions that strongly impact hybrid viability. Strikingly, two of these regions underlie genetic incompatibilities in hybrids between X. birchmanni and its sister species X. malinche. Our results demonstrate that ancient hybridization has played a role in the origin of this shared genetic incompatibility. Moreover, ancestry mismatch at these incompatible regions has remarkably similar consequences for phenotypes and hybrid survival in X. cortezi × X. birchmanni hybrids as in X. malinche × X. birchmanni hybrids. Our findings identify varied reproductive barriers that shape genetic exchange between naturally hybridizing species and highlight the complex evolutionary outcomes of hybridization.

3.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38596360

RESUMEN

Ant behavior relies on a collection of natural products, from following trail pheromones during foraging to warding off potential predators. How nervous systems sense these compounds to initiate a behavioral response remains unclear. Here, we used Caenorhabditis elegans chemotaxis assays to investigate how ant compounds are detected by heterospecific nervous systems. We found that C. elegans avoid extracts of the pavement ant ( Tetramorium immigrans ) and either osm-9 or tax-4 ion channels are required for this response. These experiments were conducted in an undergraduate laboratory course, demonstrating that new insights into interspecies interactions can be generated through genuine research experiences in a classroom setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA