Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Intensive Care Med ; 38(8): 717-726, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36872888

RESUMEN

Introduction: Septic shock is associated with high mortality and hemodynamic impairment. The use of corticoids is a common therapeutic tool in critically ill patients. However, data on the mechanisms and prognostic ability of hemodynamic improvement by adjunctive steroids are rare. This study primarily aimed to evaluate short-term effects of hydrocortisone therapy on catecholamine requirement and hemodynamics derived from transpulmonary thermodilution (TPTD) in 30 critically ill patients with septic shock and a 28 days mortality rate of 50%. Methods: Hydrocortisone was administered with an intravenous bolus of 200 mg, followed by a continuous infusion of 200 mg per 24 h. Hemodynamic assessment was performed immediately before as well as 2, 8, 16, and 24 h after the initiation of corticoids. For primary endpoint analysis, we evaluated the impact of hydrocortisone on vasopressor dependency index (VDI) and cardiac power index (CPI). Results: Adjunctive hydrocortisone induced significant decreases of VDI from 0.41 (0.29-0.49) mmHg-1 at baseline to 0.35 (0.25-0.46) after 2 h (P < .001), 0.24 (0.12-0.35) after 8 h (P < .001), 0.18 (0.09-0.24) after 16 h (P < .001) and 0.11 (0.06-0.20) mmHg-1 after 24 h (P < .001). In parallel, we found an improvement in CPI from 0.63 (0.50-0.83) W/m2 at baseline to 0.68 (0.54-0.85) after 2 h (P = .208), 0.71 (0.60-0.90) after 8 h (P = .033), 0.82 (0.6-0.98) after 16 h (P = .004) and 0.90 (0.67-1.07) W/m2 after 24 h (P < .001). Our analyses revealed a significant reduction in noradrenaline requirement in parallel with a moderate increase in mean arterial pressure, systemic vascular resistance index, and cardiac index. As a secondary endpoint, our results showed a significant decrease in lung water parameters. Moreover, changes in CPI (ΔCPI) and VDI (ΔVDI) after 24 h of hydrocortisone therapy revealed accurate prognostic ability to predict 28 days mortality (AUC = 0.802 vs 0.769). Conclusion: Adjunctive hydrocortisone leads to a rapid decrease in catecholamine requirement and a substantial circulatory improvement in critically ill patients with septic shock.


Asunto(s)
Choque Séptico , Humanos , Hidrocortisona/uso terapéutico , Termodilución/métodos , Enfermedad Crítica/terapia , Hemodinámica , Norepinefrina , Vasoconstrictores/uso terapéutico , Vasoconstrictores/farmacología
2.
Front Immunol ; 13: 970938, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304458

RESUMEN

We recently identified a high-affinity C1q-ApoE complex in human artery atherosclerotic intima lesions and in human amyloid plaques of Alzheimer's Disease brains defining a common pathogenetic pathway of two diverse diseases, i.e. atherosclerosis and dementia. C1q is the initiating and controlling protein of the classical complement cascade (CCC), which occupies a key role in multiple acute and chronic inflammatory tissue responses. C1q is largely produced by myeloid cells including Kupffer cells (KCs) and subsequently secreted into the circulation as an inactive preprotein. Its binding partner, Apolipoprotein E (ApoE), is produced by KCs and hepatocytes and it is also secreted into the circulation, where it regulates essential steps of lipid transport. In addition to its major source, ApoE can be produced by non-liver cells including immune cells and multiple other cells depending on local tissue contexts. To initiate the CCC cascade, C1q must be activated by molecules as varied as oxidized lipids, amyloid fibrils, and immune complexes. However, ApoE is mute towards inactive C1q but binds at high-affinity to its activated form. Specifically, our studies revealed that ApoE is a CCC-specific checkpoint inhibitor via the formation of the C1q-ApoE complex. We proposed that it may arise in multiple if not all CCC-associated diseases and that its presence indicates ongoing CCC activity. Here, we turned to the liver to examine C1q-ApoE complexes in human B- and C-viral hepatitis and nonalcoholic fatty liver disease (NAFLD). In addition, we used multidrug-resistance-2 gene-knockout (Mdr2-KO) mice as a model for inflammatory liver disease and hepatocellular carcinoma (HCC) pathogenesis. In normal murine and human livers, KCs were the major C1q-producing cell type while hepatocytes were the primary ApoE-forming cell type though the C1q-ApoE complex was rare or nonexistent. However, significant numbers of C1q-ApoE complexes formed in both Mdr2-KO, human viral hepatitis, and NAFLD around portal triads where immune cells had infiltrated the liver. Additionally, high numbers of C1q-ApoE complexes emerged in human livers in areas of extracellular lipid droplets across the entire liver parenchyma in NAFLD-affected patients. Thus, the C1q-ApoE complex is a new pathological hallmark of viral hepatitis B and C and NAFLD.


Asunto(s)
Aterosclerosis , Carcinoma Hepatocelular , Hepatitis Viral Humana , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Carcinoma Hepatocelular/patología , Complemento C1q , Neoplasias Hepáticas/patología , Apolipoproteínas E , Ratones Noqueados , Aterosclerosis/complicaciones
3.
Nature ; 605(7908): 152-159, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477759

RESUMEN

Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/prevención & control , Progresión de la Enfermedad , Ganglios Espinales , Ganglios Simpáticos , Ratones , Neuronas/fisiología , Placa Aterosclerótica/prevención & control
4.
J Intensive Care Med ; 37(1): 21-31, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33148110

RESUMEN

INTRODUCTION: Visualization of B-lines via lung ultrasound provides a non-invasive estimation of pulmonary hydration. Extravascular lung water index (EVLWI) and pulmonary vascular permeability index (PVPI) assessed by transpulmonary thermodilution (TPTD) represent the most validated parameters of lung water and alveolocapillary permeability, but measurement is invasive and expensive. This study aimed to compare the correlations of B-lines scores from extensive 28-sector and simplified 4-sector chest scan with EVLWI and PVPI derived from TPTD in the setting of intensive care unit (primary endpoint). METHODS: We performed scoring of 28-sector and 4-sector B-Lines in 50 critically ill patients. TPTD was carried out with the PiCCO-2-device (Pulsion Medical Systems SE, Maquet Getinge Group). Median time exposure for ultrasound procedure was 12 minutes for 28-sector and 4 minutes for 4-sector scan. RESULTS: Primarily, we found close correlations of 28-sector as well as 4-sector B-Lines scores with EVLWI (R2 = 0.895 vs. R2 = 0.880) and PVPI (R2 = 0.760 vs. R2 = 0.742). Both B-lines scores showed high accuracy to identify patients with specific levels of EVLWI and PVPI. The extensive 28-sector B-lines score revealed a moderate advantage compared to simplified 4-sector scan in detecting a normal EVLWI ≤ 7 (28-sector scan: sensitivity = 81.8%, specificity = 94.9%, AUC = 0.939 versus 4-sector scan: sensitivity = 81.8%, specificity = 82.1%, AUC = 0.902). Both protocols were approximately equivalent in prediction of lung edema with EVLWI ≥ 10 (28-sector scan: sensitivity = 88.9%, specificity = 95.7%, AUC = 0.977 versus 4-sector scan: sensitivity = 81.5%, specificity = 91.3%, AUC = 0.958) or severe pulmonary edema with EVLWI ≥ 15 (28-sector scan: sensitivity = 91.7%, specificity = 97.4%, AUC = 0.995 versus 4-sector scan: sensitivity = 91.7%, specificity = 92.1%, AUC = 0.978). As secondary endpoints, our evaluations resulted in significant associations of 28-sector as well as simplified 4-sector B-Lines score with parameters of respiratory function. CONCLUSION: Both B-line protocols provide accurate non-invasive evaluation of lung water in critically ill patients. The 28-sector scan offers a marginal advantage in prediction of pulmonary edema, but needs substantially more time than 4-sector scan.


Asunto(s)
Agua Pulmonar Extravascular , Edema Pulmonar , Enfermedad Crítica , Agua Pulmonar Extravascular/diagnóstico por imagen , Humanos , Pulmón/diagnóstico por imagen , Edema Pulmonar/diagnóstico por imagen , Termodilución
5.
Nat Med ; 25(3): 529, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30718908

RESUMEN

In the version of this article originally published, a sentence was erroneously included in the author contributions, and information regarding second shared authorship was missing from the author contributions. The following should not have been included in the author contributions: "C.W. and A.J.R.H. supervised the work presented in Figs. 1, 2, 5, 6; P.Z. and C.S. supervised the work presented in Figs. 3, 4." Additionally, this sentence should have appeared at the beginning of the author contributions: "These authors contributed equally: C.W., P.F.Z., C.S., and A.J.R.H." The errors have been corrected in the print, PDF and HTML versions of the article.

6.
Nat Med ; 25(3): 496-506, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30692699

RESUMEN

Apolipoprotein-E (ApoE) has been implicated in Alzheimer's disease, atherosclerosis, and other unresolvable inflammatory conditions but a common mechanism of action remains elusive. We found in ApoE-deficient mice that oxidized lipids activated the classical complement cascade (CCC), resulting in leukocyte infiltration of the choroid plexus (ChP). All human ApoE isoforms attenuated CCC activity via high-affinity binding to the activated CCC-initiating C1q protein (KD~140-580 pM) in vitro, and C1q-ApoE complexes emerged as markers for ongoing complement activity of diseased ChPs, Aß plaques, and atherosclerosis in vivo. C1q-ApoE complexes in human ChPs, Aß plaques, and arteries correlated with cognitive decline and atherosclerosis, respectively. Treatment with small interfering RNA (siRNA) against C5, which is formed by all complement pathways, attenuated murine ChP inflammation, Aß-associated microglia accumulation, and atherosclerosis. Thus, ApoE is a direct checkpoint inhibitor of unresolvable inflammation, and reducing C5 attenuates disease burden.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Apolipoproteínas E/inmunología , Enfermedades de las Arterias Carótidas/inmunología , Plexo Coroideo/inmunología , Disfunción Cognitiva/inmunología , Complemento C1q/inmunología , Vía Clásica del Complemento/inmunología , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/inmunología , Animales , Aorta/inmunología , Aorta/patología , Aterosclerosis/inmunología , Aterosclerosis/patología , Encéfalo/inmunología , Encéfalo/patología , Arterias Carótidas/inmunología , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/patología , Plexo Coroideo/patología , Disfunción Cognitiva/patología , Complemento C5 , Femenino , Humanos , Leucocitos , Masculino , Ratones Noqueados para ApoE , Microscopía Fluorescente , Persona de Mediana Edad , Placa Amiloide/inmunología , Placa Amiloide/patología , Isoformas de Proteínas/inmunología , ARN Interferente Pequeño
7.
Immunity ; 42(6): 1100-15, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26084025

RESUMEN

Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe(-/-) mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4(+) T cells, generated CD4(+), CD8(+), T regulatory (Treg) effector and central memory cells, converted naive CD4(+) T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin ß receptors (VSMC-LTßRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTßRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe(-/-)Ltbr(-/-) and to a similar extent in aged Apoe(-/-)Ltbr(fl/fl)Tagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTßRs participate in atherosclerosis protection via ATLOs.


Asunto(s)
Envejecimiento/inmunología , Aterosclerosis/inmunología , Receptor beta de Linfotoxina/metabolismo , Miocitos del Músculo Liso/fisiología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Adventicia/inmunología , Envejecimiento/genética , Animales , Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Células Cultivadas , Coristoma/inmunología , Memoria Inmunológica , Activación de Linfocitos/genética , Tejido Linfoide/inmunología , Receptor beta de Linfotoxina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...