Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 531(11): 1163-1183, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37070301

RESUMEN

Honey bees (Apis mellifera) express remarkable social interactions and cognitive capabilities that have been studied extensively. In many cases, behavioral studies were accompanied by neurophysiological and neuroanatomical investigations. While most studies have focused on primary sensory neuropils, such as the optic lobes or antennal lobes, and major integration centers, such as the mushroom bodies or the central complex, many regions of the cerebrum (the central brain without the optic lobes) of the honey bee are only poorly explored so far, both anatomically and physiologically. To promote studies of these brain regions, we used anti-synapsin immunolabeling and neuronal tract tracings followed by confocal imaging and 3D reconstructions to demarcate all neuropils in the honey bee cerebrum and close this gap at the anatomical level. We demarcated 35 neuropils and 25 fiber tracts in the honey bee cerebrum, most of which have counterparts in the fly (Drosophila melanogaster) and other insect species that have been investigated so far at this level of detail. We discuss the role of cerebral neuropils in multisensory integration in the insect brain, emphasize the importance of this brain atlas for comparative studies, and highlight specific architectural features of the honey bee cerebrum.


Asunto(s)
Encéfalo , Drosophila melanogaster , Abejas , Animales , Encéfalo/fisiología , Neurópilo/fisiología , Neuronas , Cuerpos Pedunculados
2.
J Comp Neurol ; 529(12): 3155-3170, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33950523

RESUMEN

Age-related behavioral plasticity is a major prerequisite for the ecological success of insect societies. Although ecological aspects of behavioral flexibility have been targeted in many studies, the underlying intrinsic mechanisms controlling the diverse changes in behavior along the individual life history of social insects are not completely understood. Recently, the neuropeptides allatostatin-A, corazonin, and tachykinin have been associated with the regulation of behavioral transitions in social insects. Here, we investigated changes in brain localization and expression of these neuropeptides following major behavioral transitions in Cataglyphis nodus ants. Our immunohistochemical analyses in the brain revealed that the overall branching pattern of neurons immunoreactive (ir) for the three neuropeptides is largely independent of the behavioral stages. Numerous allatostatin-A- and tachykinin-ir neurons innervate primary sensory neuropils and high-order integration centers of the brain. In contrast, the number of corazonergic neurons is restricted to only four neurons per brain hemisphere with cell bodies located in the pars lateralis and axons extending to the medial protocerebrum and the retrocerebral complex. Most interestingly, the cell-body volumes of these neurons are significantly increased in foragers compared to freshly eclosed ants and interior workers. Quantification of mRNA expression levels revealed a stage-related change in the expression of allatostatin-A and corazonin mRNA in the brain. Given the presence of the neuropeptides in major control centers of the brain and the neurohemal organs, these mRNA-changes strongly suggest an important modulatory role of both neuropeptides in the behavioral maturation of Cataglyphis ants.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Neuropéptidos/biosíntesis , Conducta Social , Animales , Hormigas , Química Encefálica/fisiología , Neuronas/química , Neuropéptidos/análisis
3.
J Neurochem ; 158(2): 391-412, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33704768

RESUMEN

Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age-related polyethism characterized by age-related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age-related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants' central nervous system combined with brain extract analysis by Q-Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide-, neuropeptide-like, and protein hormone prepropeptide genes, including a novel neuropeptide-like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage-specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants.


Asunto(s)
Hormigas/fisiología , Química Encefálica/genética , Encéfalo/diagnóstico por imagen , Perfilación de la Expresión Génica , Neuropéptidos/genética , Proteómica , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Inmunohistoquímica , Espectrometría de Masas , Neuropéptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transcriptoma
4.
J Comp Neurol ; 528(18): 3479-3506, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32337712

RESUMEN

Cataglyphis ants are known for their outstanding navigational abilities. They return to their inconspicuous nest after far-reaching foraging trips using path integration, and whenever available, learn and memorize visual features of panoramic sceneries. To achieve this, the ants combine directional visual information from celestial cues and panoramic scenes with distance information from an intrinsic odometer. The largely vision-based navigation in Cataglyphis requires sophisticated neuronal networks to process the broad repertoire of visual stimuli. Although Cataglyphis ants have been subjected to many neuroethological studies, little is known about the general neuronal organization of their central brain and the visual pathways beyond major circuits. Here, we provide a comprehensive, three-dimensional neuronal map of synapse-rich neuropils in the brain of Cataglyphis nodus including major connecting fiber systems. In addition, we examined neuronal tracts underlying the processing of visual information in more detail. This study revealed a total of 33 brain neuropils and 30 neuronal fiber tracts including six distinct tracts between the optic lobes and the cerebrum. We also discuss the importance of comparative studies on insect brain architecture for a profound understanding of neuronal networks and their function.


Asunto(s)
Hormigas/anatomía & histología , Hormigas/fisiología , Encéfalo/anatomía & histología , Navegación Espacial/fisiología , Vías Visuales/anatomía & histología , Animales , Encéfalo/fisiología , Inmunohistoquímica , Aprendizaje/fisiología , Microscopía Confocal , Neuronas/citología , Neuronas/fisiología , Neurópilo/citología , Neurópilo/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología
5.
Nat Commun ; 10(1): 3097, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308381

RESUMEN

Dopaminergic neurons in the brain of the Drosophila larva play a key role in mediating reward information to the mushroom bodies during appetitive olfactory learning and memory. Using optogenetic activation of Kenyon cells we provide evidence that recurrent signaling exists between Kenyon cells and dopaminergic neurons of the primary protocerebral anterior (pPAM) cluster. Optogenetic activation of Kenyon cells paired with odor stimulation is sufficient to induce appetitive memory. Simultaneous impairment of the dopaminergic pPAM neurons abolishes appetitive memory expression. Thus, we argue that dopaminergic pPAM neurons mediate reward information to the Kenyon cells, and in turn receive feedback from Kenyon cells. We further show that this feedback signaling is dependent on short neuropeptide F, but not on acetylcholine known to be important for odor-shock memories in adult flies. Our data suggest that recurrent signaling routes within the larval mushroom body circuitry may represent a mechanism subserving memory stabilization.


Asunto(s)
Encéfalo/fisiología , Neuronas Dopaminérgicas/fisiología , Drosophila melanogaster/fisiología , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Recompensa , Acetilcolina/metabolismo , Animales , Apetito/fisiología , Encéfalo/citología , Condicionamiento Clásico , Retroalimentación Fisiológica , Larva , Modelos Psicológicos , Cuerpos Pedunculados/citología , Vías Nerviosas/fisiología , Neuropéptidos/metabolismo , Odorantes , Percepción Olfatoria/fisiología , Optogenética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...