Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 11: 784972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35118009

RESUMEN

INTRODUCTION: Improved understanding of vestibulodynia pathophysiology is required to develop appropriately targeted treatments. Established features include vulvovaginal hyperinnervation, increased nociceptive signalling and hypersensitivity. Emerging evidence indicates macrophage-neuron signalling contributes to chronic pain pathophysiology. Macrophages are broadly classified as M1 or M2, demonstrating pro-nociceptive or anti-nociceptive effects respectively. This study investigates the impact of clodronate liposomes, a macrophage depleting agent, on nociceptive signalling in a mouse model of vestibulodynia. METHODS: Microinjection of complete Freund's adjuvant (CFA) at the vaginal introitus induced mild chronic inflammation in C57Bl/6J mice. A subgroup was treated with the macrophage depleting agent clodronate. Control mice received saline. After 7 days, immunolabelling for PGP9.5, F4/80+CD11c+ and F4/80+CD206+ was used to compare innervation density and presence of M1 and M2 macrophages respectively in experimental groups. Nociceptive signalling evoked by vaginal distension was assessed using immunolabelling for phosphorylated MAP extracellular signal-related kinase (pERK) in spinal cord sections. Hyperalgesia was assessed by visceromotor response to graded vaginal distension. RESULTS: CFA led to increased vaginal innervation (p < 0.05), increased pERK-immunoreactive spinal cord dorsal horn neurons evoked by vaginal-distension (p < 0.01) and enhanced visceromotor responses compared control mice (p < 0.01). Clodronate did not reduce vaginal hyperinnervation but significantly reduced the abundance of M1 and M2 vaginal macrophages and restored vaginal nociceptive signalling and vaginal sensitivity to that of healthy control animals. CONCLUSIONS: We have developed a robust mouse model of vestibulodynia that demonstrates vaginal hyperinnervation, enhanced nociceptive signalling, hyperalgesia and allodynia. Macrophages contribute to hypersensitivity in this model. Macrophage-sensory neuron signalling pathways may present useful pathophysiological targets.


Asunto(s)
Vulvodinia , Animales , Ácido Clodrónico/uso terapéutico , Femenino , Adyuvante de Freund , Hiperalgesia/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Vulvodinia/tratamiento farmacológico
2.
J Neurochem ; 149(6): 729-746, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30963576

RESUMEN

Sphingosine-1-phosphate (S1P) is an essential bioactive sphingosine lipid involved in many neurological disorders. Sphingosine kinase 1 (SphK1), a key enzyme for S1P production, is concentrated in presynaptic terminals. However, the role of S1P/SphK1 signaling in exocytosis remains elusive. By detecting catecholamine release from single vesicles in chromaffin cells, we show that a dominant negative SphK1 (SphK1DN ) reduces the number of amperometric spikes and increases the duration of foot, which reflects release through a fusion pore, implying critical roles for S1P in regulating the rate of exocytosis and fusion pore expansion. Similar phenotypes were observed in chromaffin cells obtained from SphK1 knockout mice compared to those from wild-type mice. In addition, extracellular S1P treatment increased the number of amperometric spikes, and this increase, in turn, was inhibited by a selective S1P3 receptor blocker, suggesting extracellular S1P may regulate the rate of exocytosis via activation of S1P3. Furthermore, intracellular S1P application induced a decrease in foot duration of amperometric spikes in control cells, indicating intracellular S1P may regulate fusion pore expansion during exocytosis. Taken together, our study represents the first demonstration that S1P regulates exocytosis through distinct mechanisms: extracellular S1P may modulate the rate of exocytosis via activation of S1P receptors while intracellular S1P may directly control fusion pore expansion during exocytosis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Células Cromafines/metabolismo , Exocitosis/fisiología , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingosina/metabolismo
4.
Neuroscience ; 372: 16-26, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29294338

RESUMEN

Vulvodynia is a prevalent chronic pain disorder associated with high medical costs and often ineffective treatments. The major pathological feature is proliferation of vaginal nerve fibers. This study aimed to develop a highly reproducible animal model to study neuroproliferation in the vagina and aid the identification of appropriately targeted treatments for conditions such as vulvodynia. Mild chronic inflammation was induced using microinjection of complete Freund's adjuvant in the distal vagina of C57Bl/6 mice. Control mice received saline. Inflammation and innervation density were assessed at 7 and 28 days after a single administration or 14 days following repeated administration of complete Freund's adjuvant or saline. Histochemistry and blinded-analysis of images were used to assess vaginal morphology (H & E) and abundance of macrophages (CD68-labeling), mast cells (toluidine blue staining, mast cell tryptase-immunoreactivity), blood vessels (αSMA-immunoreactivity) and nerve fibers immunoreactive for the pan-neuronal marker PGP9.5. Subpopulations of nerve fibers were identified using immunoreactivity for calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY). Single administration of complete Freund's adjuvant resulted in vaginal swelling, macrophage infiltration, vascular proliferation and increased abundance of nerve fibers immunoreactive for CGRP, SP, VIP and/or PGP9.5 but not NPY, evident at seven days. Inflammation further increased following repeated administration of complete Freund's adjuvant but nerve fiber proliferation did not. Nerve fiber proliferation continued to be evident at 28 days. The inter-individual differences within each treatment group were small, indicating that this model may be useful to study mechanisms underlying vaginal nerve fiber proliferation associated with inflammation.


Asunto(s)
Inflamación/fisiopatología , Vagina/inmunología , Vagina/inervación , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Edema/inmunología , Edema/patología , Femenino , Adyuvante de Freund , Inflamación/patología , Ratones Endogámicos C57BL , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Fibras Nerviosas/inmunología , Fibras Nerviosas/patología , Sustancia P/metabolismo , Factores de Tiempo , Vagina/irrigación sanguínea , Vagina/patología , Péptido Intestinal Vasoactivo/metabolismo
5.
Neurourol Urodyn ; 37(3): 960-970, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29053899

RESUMEN

BACKGROUND: Peptidergic nerve fibers provide important contributions to urethral function. Urethral innervation of female mice is not well documented. AIMS: To determine the distribution and projection sites of nerve fibers immunoreactive for vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), substance P (SP), and neuropeptide Y (NPY) in the urethra of wild-type control mice and compare innervation characteristics between the proximal and distal urethra of young nullipara and older multipara mice. Furthermore, to identify the location and neurochemical coding of the spinal afferent nerve endings in the urethra, whose sensory neurons reside in lumbosacral dorsal root ganglia (DRG). METHODS: Multiple labeling immunohistochemistry of urethral sections of nulliparous (6-8 weeks old), and multiparous (9-12 months old) mice, and anterograde axonal tracing from L5-S2 (DRG) in vivo. RESULTS: Abundant VIP-, CGRP-, SP-, and NPY-immunoreactive nerve fibers were identified in the adventitia, muscularis, and lamina propria of proximal and distal segments of the urethra. A proportion of fibers were closely associated with blood vessels, glands, and cells immunoreactive for PGP9.5. The epithelium contained abundant nerve fibers immunoreactive for CGRP and/or SP. Epithelial innervation was increased in the distal urethra of multipara mice. Abundant fibers were traced from L5-S2 DRG to all urethral regions. CONCLUSIONS: We present the first identification of spinal afferent endings in the urethra. Peptidergic nerve fibers, including multiple populations of spinal afferents, provide rich innervation of the female mouse urethra. The morphology of fibers in the epithelium and other regions suggests multiple nerve-cell interactions impacting on urethral function.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Fibras Nerviosas/metabolismo , Neuropéptido Y/metabolismo , Sustancia P/metabolismo , Uretra/inervación , Péptido Intestinal Vasoactivo/metabolismo , Animales , Femenino , Ganglios Espinales/metabolismo , Inmunohistoquímica , Ratones , Uretra/metabolismo
6.
Front Mol Neurosci ; 10: 317, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29066950

RESUMEN

The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and virtually all neurons responded with a rapid retraction of neurites and growth cone collapse which were associated with RhoA and ROCK activation. The S1P1 receptor agonist SEW2871 neither activated RhoA or neurite retraction, nor was S1P-induced neurite retraction mitigated in S1P1-deficient neurons. Depletion of S1P3 receptors however resulted in a dramatic inhibition of S1P-induced neurite retraction and was on the contrary associated with a significant elongation of neuronal processes in response to S1P. Opposing responses to S1P could be observed in the same neuron population, where S1P could activate S1P1 receptors to stimulate elongation or S1P3 receptors and retraction. S1P was, for the first time in sensory neurons, linked to the phosphorylation of collapsin response-mediated protein-2 (CRMP2), which was inhibited by ROCK inhibition. The improved sensory recovery after crush injury further supported the relevance of a critical role for S1P and receptors in fine-tuning axonal outgrowth in peripheral neurons.

7.
J Comp Neurol ; 525(10): 2394-2410, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28324630

RESUMEN

The vagina is innervated by a complex arrangement of sensory, sympathetic, and parasympathetic nerve fibers that contain classical transmitters plus an array of neuropeptides and enzymes known to regulate diverse processes including blood flow and nociception. The neurochemical characteristics and distributions of peptide-containing nerves in the mouse vagina are unknown. This study used multiple labeling immunohistochemistry, confocal maging and analysis to investigate the presence and colocalization of the peptides vasoactive intestinal polypeptide (VIP), calcitonin-gene related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY), and the nitric oxide synthesizing enzyme neuronal nitric oxide synthase (nNOS) in nerve fibers of the murine vaginal wall. We compared cervical and vulvar areas of the vagina in young nullipara and older multipara C57Bl/6 mice, and identified differences including that small ganglia were restricted to cervical segments, epithelial fibers were mainly present in vulvar segments and most nerve fibers were found in the lamina propria of the cervical region of the vagina, where a higher number of fibers containing immunoreactivity for VIP, CGRP, SP, or nNOS were found. Two populations of VIP-containing fibers were identified: fibers containing CGRP and fibers containing VIP but not CGRP. Differences between young and older mice were present in multiple layers of the vaginal wall, with older mice showing overall loss of innervation of epithelium of the proximal vagina and reduced proportions of VIP, CGRP, and SP containing nerve fibers in the distal epithelium. The distal vagina also showed increased vascularization and perivascular fibers containing NPY. Immunolabeling of ganglia associated with the vagina indicated the likely origin of some peptidergic fibers. Our results reveal regional differences and age- or parity-related changes in innervation of the mouse vagina, effecting the distribution of neuropeptides with diverse roles in function of the female genital tract.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/análisis , Fibras Nerviosas/química , Neuropéptido Y/análisis , Sustancia P/análisis , Vagina/química , Péptido Intestinal Vasoactivo/análisis , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas/metabolismo , Neuropéptido Y/metabolismo , Óxido Nítrico Sintasa de Tipo I/análisis , Óxido Nítrico Sintasa de Tipo I/metabolismo , Sustancia P/metabolismo , Vagina/citología , Vagina/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
8.
Diabetes ; 66(5): 1301-1311, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28174291

RESUMEN

Pancreatic islet transplantation is a promising clinical treatment for type 1 diabetes, but success is limited by extensive ß-cell death in the immediate posttransplant period and impaired islet function in the longer term. Following transplantation, appropriate vascular remodeling is crucial to ensure the survival and function of engrafted islets. The sphingosine kinase (SK) pathway is an important regulator of vascular beds, but its role in the survival and function of transplanted islets is unknown. We observed that donor islets from mice deficient in SK1 (Sphk1 knockout) contain a reduced number of resident intraislet vascular endothelial cells. Furthermore, we demonstrate that the main product of SK1, sphingosine-1-phosphate, controls the migration of intraislet endothelial cells in vitro. We reveal in vivo that Sphk1 knockout islets have an impaired ability to cure diabetes compared with wild-type controls. Thus, SK1-deficient islets not only contain fewer resident vascular cells that participate in revascularization, but likely also a reduced ability to recruit new vessels into the transplanted islet. Together, our data suggest that SK1 is important for islet revascularization following transplantation and represents a novel clinical target for improving transplant outcomes.


Asunto(s)
Movimiento Celular/genética , Diabetes Mellitus Experimental/cirugía , Diabetes Mellitus Tipo 1/cirugía , Células Endoteliales/citología , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/irrigación sanguínea , Lisofosfolípidos/metabolismo , Neovascularización Fisiológica/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Esfingosina/análogos & derivados , Animales , Citometría de Flujo , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Esfingosina/metabolismo , Trasplantes/irrigación sanguínea
9.
Front Cell Neurosci ; 10: 258, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27872583

RESUMEN

Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P) within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3) in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies, and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and [Formula: see text] mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus.

10.
Front Mol Neurosci ; 8: 29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26283908

RESUMEN

Chronic pain is one of the most burdensome health issues facing the planet (as costly as diabetes and cancer combined), and in desperate need for new diagnostic targets leading to better therapies. The bioactive lipid sphingosine 1-phosphate (S1P) and its receptors have recently been shown to modulate nociceptive signaling at the level of peripheral nociceptors and central neurons. However, the exact role of S1P generating enzymes, in particular sphingosine kinase 2 (Sphk2), in nociception remains unknown. We found that both sphingosine kinases, Sphk1 and Sphk2, were expressed in spinal cord (SC) with higher levels of Sphk2 mRNA compared to Sphk1. All three Sphk2 mRNA-isoforms were present with the Sphk2.1 mRNA showing the highest relative expression. Mice deficient in Sphk2 (Sphk2(-/-)) showed in contrast to mice deficient in Sphk1 (Sphk1(-/-)) substantially lower spinal S1P levels compared to wild-type C57BL/6 mice. In the formalin model of acute peripheral inflammatory pain, Sphk2(-/-) mice showed facilitation of nociceptive transmission during the late response, whereas responses to early acute pain, and the number of c-Fos immunoreactive dorsal horn neurons were not different between Sphk2(-/-) and wild-type mice. Chronic peripheral inflammation (CPI) caused a bilateral increase in mechanical sensitivity in Sphk2(-/-) mice. Additionally, CPI increased the relative mRNA expression of P2X4 receptor, brain-derived neurotrophic factor and inducible nitric oxide synthase in the ipsilateral SC of wild-type but not Sphk2(-/-) mice. Similarly, Sphk2(-/-) mice showed in contrast to wild-type no CPI-dependent increase in areas of the dorsal horn immunoreactive for the microglia marker Iba-1 and the astrocyte marker Glial fibrillary acidic protein (GFAP). Our results suggest that the tightly regulated cell signaling enzyme Sphk2 may be a key component for facilitation of nociceptive circuits in the CNS leading to central sensitization and pain memory formation.

11.
J Comp Neurol ; 523(17): 2555-69, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26010480

RESUMEN

In mice dorsal root ganglia (DRG), some neurons express calcitonin gene-related peptide (CGRP) without substance P (SP; CGRP(+) SP(-) ). The projections and functions of these neurons are unknown. Therefore, we combined in vitro axonal tracing with multiple-labeling immunohistochemistry to neurochemically define these neurons and characterize their peripheral and central projections. Cervical spinal cord, DRG, and forepaw skin were removed from C57Bl/6 mice and multiple-labeled for CGRP, SP, and either marker for the sensory neuron subpopulations transient receptor potential vanilloid type 1 (TRPV1), neurofilament 200 (NF200), or vesicular glutamate transporter 2 (VGluT1). To determine central projections of CGRP(+) SP(-) neurons, Neurobiotin (NB) was applied to the C7 ventral ramus and visualized in DRG and spinal cord sections colabeled for CGRP and SP. Half (50%) of the CGRP-immunoreactive DRG neurons lacked detectable SP and had a mean soma size of 473 ± 14 µm(2) (n = 5); 89% of the CGRP(+) SP(-) neurons expressed NF200 (n = 5), but only 32% expressed TRPV1 (n = 5). Cutaneous CGRP(+) SP(-) fibers were numerous within dermal papillae and around hair shafts (n = 4). CGRP(+) SP(-) boutons were prevalent in lateral lamina I and in lamina IV/V of the dorsal horn (n = 5). NB predominantly labeled fibers penetrating lamina IV/V, 6 ± 3% contained CGRP (n = 5), and 21 ± 2% contained VGluT1 (n = 3). CGRP(+) SP(-) afferent neurons are likely to be non-nociceptive. Their soma size, neurochemical profile, and peripheral and central targets suggest that CGRP(+) SP(-) neurons are polymodal mechanoceptors.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Ganglios Espinales/citología , Células Receptoras Sensoriales/metabolismo , Piel/citología , Médula Espinal/citología , Vías Aferentes/fisiología , Análisis de Varianza , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Recuento de Células , Femenino , Ratones , Ratones Endogámicos C57BL , Proteínas de Neurofilamentos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Piel/inervación , Sustancia P/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
12.
J Neurosci ; 33(6): 2582-92, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23392686

RESUMEN

The biolipid sphingosine-1-phosphate (S1P) is an essential modulator of innate immunity, cell migration, and wound healing. It is released locally upon acute tissue injury from endothelial cells and activated thrombocytes and, therefore, may give rise to acute post-traumatic pain sensation via a yet elusive molecular mechanism. We have used an interdisciplinary approach to address this question, and we find that intradermal injection of S1P induced significant licking and flinching behavior in wild-type mice and a dose-dependent flare reaction in human skin as a sign of acute activation of nociceptive nerve terminals. Notably, S1P evoked a small excitatory ionic current that resulted in nociceptor depolarization and action potential firing. This ionic current was preserved in "cation-free" solution and blocked by the nonspecific Cl(-) channel inhibitor niflumic acid and by preincubation with the G-protein inhibitor GDP-ß-S. Notably, S1P(3) receptor was detected in virtually all neurons in human and mouse DRG. In line with this finding, S1P-induced neuronal responses and spontaneous pain behavior in vivo were substantially reduced in S1P(3)(-/-) mice, whereas in control S1P(1) floxed (S1P(1)(fl/fl)) mice and mice with a nociceptor-specific deletion of S1P(1)(-/-) receptor (SNS-S1P(1)(-/-)), neither the S1P-induced responses in vitro nor the S1P-evoked pain-like behavior was altered. Therefore, these findings indicate that S1P evokes significant nociception via G-protein-dependent activation of an excitatory Cl(-) conductance that is largely mediated by S1P(3) receptors present in nociceptors, and point to these receptors as valuable therapeutic targets for post-traumatic pain.


Asunto(s)
Lisofosfolípidos/toxicidad , Dimensión del Dolor/métodos , Dolor/metabolismo , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/análogos & derivados , Adulto , Animales , Células Cultivadas , Método Doble Ciego , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dolor/inducido químicamente , Dimensión del Dolor/efectos de los fármacos , Esfingosina/toxicidad
13.
Mol Pain ; 7: 95, 2011 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-22152428

RESUMEN

BACKGROUND: Unmyelinated primary afferent nociceptors are commonly classified into two main functional types: those expressing neuropeptides, and non-peptidergic fibers that bind the lectin IB4. However, many small diameter primary afferent neurons neither contain any known neuropeptides nor bind IB4. Most express high levels of vesicular glutamate transporter 2 (VGluT2) and are assumed to be glutamatergic nociceptors but their terminations within the spinal cord are unknown. We used in vitro anterograde axonal tracing with Neurobiotin to identify the central projections of these putative glutamatergic nociceptors. We also quantitatively characterised the spatial arrangement of these terminals with respect to those that expressed the neuropeptide, calcitonin gene-related peptide (CGRP). RESULTS: Neurobiotin-labeled VGluT2-immunoreactive (IR) terminals were restricted to lamina I, with a medial-to-lateral distribution similar to CGRP-IR terminals. Most VGluT2-IR terminals in lateral lamina I were not labeled by Neurobiotin implying that they arose mainly from central neurons. 38 ± 4% of Neurobiotin-labeled VGluT2-IR terminals contained CGRP-IR. Conversely, only 17 ± 4% of Neurobiotin-labeled CGRP-IR terminals expressed detectable VGluT2-IR. Neurobiotin-labeled VGluT2-IR or CGRP-IR terminals often aggregated into small clusters or microdomains partially surrounding intrinsic lamina I neurons. CONCLUSIONS: The central terminals of primary afferents which express high levels of VGluT2-IR but not CGRP-IR terminate mainly in lamina I. The spatial arrangement of VGluT2-IR and CGRP-IR terminals suggest that lamina I neurons receive convergent inputs from presumptive nociceptors that are primarily glutamatergic or peptidergic. This reveals a previously unrecognized level of organization in lamina I consistent with the presence of multiple nociceptive processing pathways.


Asunto(s)
Neuronas Aferentes/metabolismo , Células del Asta Posterior/metabolismo , Médula Espinal/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Animales , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Nociceptores/metabolismo , Terminales Presinápticos/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo
14.
Life Sci ; 89(21-22): 806-11, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-21945191

RESUMEN

AIMS: Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. Despite its importance, treatment methods are limited and restricted to symptomatic care, highlighting the urgent need for new treatment options. Tissue damage in COPD is thought to result from an inability of the normal repair processes with accumulation of apoptotic material and impaired clearance of this material by macrophages in the airways. Lung inflammation involves the bioactive sphingolipid sphingosine 1-phosphate (S1P). MAIN METHODS: We investigated lung tissue samples from 55 patients (25 with COPD) undergoing lobectomies for management of cancer. We analysed the sphingosine-kinase (SphK) mRNA expression profile, SphK enzyme activity as well as the localisation and expression of individual proteins related to the SphK-signalling system. KEY FINDINGS: We show in this study for the first time a comprehensive expression profile of all synthesising enzymes, receptors and degrading enzymes of the SphK-signalling system in the human lung. Multivariate ANOVA showed that the relative mRNA expression of S1P receptor (S1PR) subtype 5 was reduced in COPD. There were strong positive correlations between the mRNA expression of S1PR5 and S1PR1 and S1PR3, and between S1PR3 and S1PR2. A significant negative correlation was found between S1PR1 and SphK protein activity. SIGNIFICANCE: The correlations between expression levels of receptors and enzymes involved in the sphingosine kinase signalling system in the lung suggest common regulatory mechanisms. Our findings of reduced S1PR5 in COPD and the correlation with other S1P receptors in COPD identify S1PR5 as a possible novel target for pharmacotherapy.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Pulmón/enzimología , Pulmón/fisiopatología , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Transducción de Señal/fisiología , Anciano , Análisis de Varianza , Cartilla de ADN , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Enfermedad Pulmonar Obstructiva Crónica/patología , ARN Mensajero/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo
15.
J Sex Med ; 8(7): 1985-95, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21477025

RESUMEN

INTRODUCTION: The structural and neurochemical characterization of the sensory innervation of the external genitalia of females is poorly known. AIMS: To immunohistochemically map the sensory innervation of external genitalia and surrounding structures of female guinea pigs and mice. METHODS: Large-diameter sensory fibers, presumably mechanoreceptors, were identified by their immunoreactivity to neuron-specific enolase (NSE) or vesicular glutamate transporter 1 (VGluT1). Peptidergic sensory fibers, presumably unmyelinated nociceptors, were identified by their immunoreactivity to calcitonin gene-related peptide (CGRP), substance P, or both. Multiple-labelled tissues were examined with high-resolution confocal microscopy. MAIN OUTCOME MEASURES: Microscopic identification of sensory endings, including potential nociceptors, characteristic of the external genitalia. RESULTS: Large complex nerve endings immunoreactive for NSE and VGluT1 were abundant in dermal papillae of the clitoris. Each large ending was accompanied by one or two fine fibers immunoreactive for CGRP but neither substance P nor VGluT1. More simple NSE-immunoreactive endings occurred within dermal papillae in non-hairy skin of the labia and anal canal but were rare in pudendal or perineal hairy skin. Fine intra-epithelial fibers immunoreactive for NSE but not CGRP were abundant in hairy skin but rare in non-hairy genital skin and the clitoris. Only fine varicose fibers immunoreactive for both CGRP and substance P occurred in connective tissue underlying the mucosal epithelium of cervix and endometrium. CONCLUSION: Compared with surrounding tissues, the sensory innervation of the clitoris is highly specialized. The coactivation of nociceptors containing CGRP but not substance P within each mechanoreceptor complex could be the explanation of pain disorders of the external genitalia.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Genitales Femeninos/inervación , Fosfopiruvato Hidratasa/metabolismo , Células Receptoras Sensoriales/metabolismo , Canal Anal/inervación , Animales , Clítoris/metabolismo , Dermis/inervación , Femenino , Cobayas , Inmunohistoquímica , Ratones , Microscopía Confocal , Nociceptores/metabolismo , Perineo/inervación , Sustancia P/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
16.
PLoS One ; 6(2): e17268, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21359147

RESUMEN

Sphingosine-1-phosphate (S1P) is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P1 receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P1 receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P1 receptor. Our data show that neuronally expressed S1P1 receptors play a significant role in regulating nociceptor function and that S1P/S1P1 signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation.


Asunto(s)
Inflamación/genética , Dolor/genética , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/fisiología , Células Receptoras Sensoriales/metabolismo , Animales , Calor/efectos adversos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Inflamación/complicaciones , Inflamación/fisiopatología , Lisofosfolípidos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nociceptores/metabolismo , Nociceptores/fisiología , Dolor/etiología , Dolor/fisiopatología , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Piel/inervación , Piel/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
17.
Arthritis Rheum ; 63(5): 1426-34, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21312189

RESUMEN

OBJECTIVE: In primary Sjögren's syndrome (SS), impairment of the gastrointestinal (GI) tract is common, and includes reduced esophageal motor function, delayed gastric emptying, and abnormalities in colonic motility; the pathogenesis is as yet unknown. We undertook this study to investigate the role of functional antibodies to the type 3 muscarinic receptor (M3R) in GI dysfunction associated with primary SS. METHODS: Muscle strip and whole-organ functional assays were used to determine whether IgG with anti-M3R activity from patients with primary SS disrupted neurotransmission in tissue from throughout the mouse GI tract. Specificity of the autoantibody for the M3R was determined using knockout mice that were deficient in the expression of muscarinic receptor subtypes. RESULTS: Functional antibodies to the M3R inhibited neuronally mediated contraction of smooth muscle from throughout the GI tract and disrupted complex contractile motility patterns in the colon. The autoantibodies were not active on tissue from mice that lacked the M3R, providing compelling evidence of the direct interaction of patient autoantibodies with the M3R. CONCLUSION: Our results indicate that anti-M3R autoantibodies have the potential to mediate multiple dysfunctions of the GI tract in primary SS, ranging from reduced esophageal motor activity to altered colonic motility. We hypothesize that altered GI motility forms part of a broader autonomic dysfunction mediated by pathogenic anti-M3R autoantibodies in primary SS.


Asunto(s)
Autoanticuerpos/inmunología , Motilidad Gastrointestinal/inmunología , Receptor Muscarínico M3/inmunología , Síndrome de Sjögren/inmunología , Transmisión Sináptica/inmunología , Acetilcolina/metabolismo , Análisis de Varianza , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Cisplatino , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Ifosfamida , Masculino , Ratones , Ratones Noqueados , Mitomicina , Contracción Muscular/efectos de los fármacos , Contracción Muscular/inmunología , Músculo Liso/efectos de los fármacos , Músculo Liso/inmunología , Receptor Muscarínico M3/metabolismo , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/fisiopatología , Transmisión Sináptica/efectos de los fármacos
18.
J Allergy Clin Immunol ; 124(5): 933-41.e1-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19665772

RESUMEN

BACKGROUND: Immunologic processes might contribute to the pathogenesis of pulmonary arterial hypertension (PAH), a fatal condition characterized by progressive pulmonary arterial remodeling, increased pulmonary vascular resistance, and right ventricular failure. Experimental allergen-driven lung inflammation evoked morphologic and functional vascular changes that resembled those observed in patients with PAH. Sphingosine kinase 1 (SphK1) is the main pulmonary contributor to sphingosine-1-phosphate (S1P) synthesis, a modulator of immune and vascular functions. OBJECTIVE: We sought to investigate the role of SphK1 in allergen-induced lung inflammation. METHODS: SphK1-deficient mice and C57Bl/6 littermates (wild-type [WT] animals) were subjected to acute or chronic allergen exposure. RESULTS: After 4 weeks of systemic ovalbumin sensitization and local airway challenge, airway responsiveness increased less in SphK1(-/-) compared with WT mice, whereas pulmonary vascular responsiveness was greatly increased and did not differ between strains. Acute lung inflammation led to an increase in eosinophils and mRNA expression for S1P phosphatase 2 and S1P lyase in lungs of WT but not SphK1(-/-) mice. After repetitive allergen exposure for 8 weeks, airway responsiveness was not augmented in SphK1(-/-) or WT mice, but pulmonary vascular responsiveness was increased in both strains, with significantly higher vascular responsiveness in SphK1(-/-) mice compared with that seen in WT mice. Increased vascular responsiveness was accompanied by remodeling of the small and intra-acinar arteries. CONCLUSION: : The data support a role for SphK1 and S1P in allergen-induced airway inflammation. However, SphK1 deficiency increased pulmonary vascular hyperresponsiveness, which is a component of PAH pathobiology. Moreover, we show for the first time the dissociation between inflammation-induced remodeling of the airways and pulmonary vasculature.


Asunto(s)
Hiperreactividad Bronquial/inmunología , Hipertensión Pulmonar/inmunología , Lisofosfolípidos/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/inmunología , Arteria Pulmonar/inmunología , Esfingosina/análogos & derivados , Enfermedad Aguda , Alérgenos/inmunología , Animales , Hiperreactividad Bronquial/inducido químicamente , Enfermedad Crónica , Citocinas/biosíntesis , Citocinas/inmunología , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/inmunología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Esfingosina/biosíntesis
19.
Naunyn Schmiedebergs Arch Pharmacol ; 379(4): 389-95, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18974978

RESUMEN

Acetylcholine (ACh) is a major regulator of visceral function exerting pharmacologically relevant effects upon smooth muscle tone and epithelial function via five types of muscarinic receptors (M1R-M5R). In this paper, we assessed the specificity of muscarinic receptor (MR) antibodies in immunohistochemical labelling on tissue sections by analysing specimens from wild-type and respective gene-deficient mice. Of 24 antibodies evaluated in this study, 16 were tested at 18 different conditions each, and eight of them in 21 different protocols, resulting in a total number of 456 antibody/protocol combinations. Each of them was tested at four antibody dilutions at minimum, so that finally, at least 1,824 conditions were evaluated. For each of them, dorsal root ganglia, urinary bladder and cross-sections through all thoracic viscera were investigated. In all cases where the antigen was available, at least one incubation condition was identified in which only select cell types were immunolabelled in the positive control but remained unlabelled in the pre-absorption control. With two exceptions (M2R antibodies), however, all antibodies produced identical immunohistochemical labelling patterns in tissues taken from corresponding gene-deficient mice even when the pre-absorption control in wild-type mice suggested specificity. Hence, the present data demonstrate the unpleasant fact that reliable immunohistochemical localisation of MR subtypes with antibodies is the exception rather than the rule. Immunohistochemical detection of MR subtype localisation in tissue sections of peripheral organs is limited to the M2R subtype utilising the most commonly used methodological approaches.


Asunto(s)
Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Receptores Muscarínicos/análisis , Receptores Muscarínicos/inmunología , Estructuras Animales/química , Animales , Anticuerpos Monoclonales/inmunología , Inmunohistoquímica/métodos , Ratones , Ratones Endogámicos , Ratones Noqueados , Receptor Muscarínico M1/análisis , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/inmunología , Receptor Muscarínico M2/análisis , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/inmunología , Receptor Muscarínico M3/análisis , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/inmunología , Receptor Muscarínico M4/análisis , Receptor Muscarínico M4/genética , Receptor Muscarínico M4/inmunología , Receptor Muscarínico M5/análisis , Receptor Muscarínico M5/genética , Receptor Muscarínico M5/inmunología , Receptores Muscarínicos/genética
20.
Am J Respir Cell Mol Biol ; 39(2): 163-70, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18323533

RESUMEN

Vascular endothelial growth factor-A (VEGF-A) responsive effects mediated via the receptors fetal liver kinase-1 (flk-1) and fms-like tyrosine kinase (flt-1), are key processes of pulmonary vascular development. Flk-1 has been shown to be involved in early embryonic lung epithelial to endothelial crosstalk and branching morphogenesis. Recent reports suggested a role of VEGF-A in lung epithelial cell function. Based on these observations, we hypothesize that epithelial flk-1 has a unique function in pulmonary development. Thus, the aim of this study is to elucidate spatiotemporal expression of flk-1 during lung development with respect to the epithelial system. Embryonic lungs were screened for flk-1 messenger RNA and protein at daily intervals, including postnatal stages. From Embryonic Day (ED) 12.5 through ED 15.5, flk-1 expression was restricted to the early vascular primitive network, while from ED 16.5 on flk-1 was detectable in the epithelial system and persisted there postnatally. At postnatal stages, flk-1 expression was increasingly restricted to individual cells in the alveolar septa. Isolation and in vitro cultivation of alveolar epithelial cells confirmed flk-1 expression and showed VEGF secretion into the supernatant. To our knowledge, this is the first murine study characterizing epithelial flk-1 expression at different stages throughout lung organogenesis until birth and at postnatal stages. To confirm epithelial flk-1 expression, we performed reporter gene analysis of the flk-1 promoter in vivo. Investigations on transgenic mouse strains, containing either a complete or incomplete flk-1 promoter driving expression of the lacZ reporter gene, suggested differential flk-1 regulation in endothelial and epithelial cells.


Asunto(s)
Células Epiteliales/metabolismo , Pulmón/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Animales , Animales Recién Nacidos , Células Cultivadas , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Pulmón/embriología , Pulmón/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Alveolos Pulmonares/citología , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , ARN Mensajero/biosíntesis , Mucosa Respiratoria , Factor A de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...