Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Geroscience ; 44(4): 2157-2169, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35349034

RESUMEN

A critical mediator of evolution is natural selection, which operates by the divergent reproductive success of individuals and results in conformity of an organism with its environment. Reproductive function has evolved to support germline transmission. In mammalian ovaries, this requires healthy, active gonad function, and follicle development. However, healthy follicles do not contribute to germline transmission in a dead animal. Therefore, support of the health and survival of the organism, in addition to fertility, must be considered as an integral part of reproductive function. Reproductive and chronological aging both impose a burden on health and increase disease rates. Tremors are a common movement disorder and are often correlated with increasing age. Muscle quality is diminished with age and these declines are gender-specific and are influenced by menopause. In the current experiments, we evaluated aging-associated and reproduction-influenced changes in motor function, utilizing changes in tremor amplitude and grip strength. Tremor amplitude was increased with aging in normal female mice. This increase in tremor amplitude was prevented in aged female mice that received ovarian tissue transplants, both in mice that received germ cell-containing or germ cell-depleted ovarian tissue. Grip strength was decreased with aging in normal female mice. This decrease in grip strength was prevented in aged female mice that received either germ cell-containing or germ cell-depleted tissue transplants. As expected, estradiol levels decreased with aging in normal female mice. Estradiol levels did not change with exposure to young ovarian tissues/cells. Surprisingly, estradiol levels were not increased in aged females that received ovaries from actively cycling, young donors. Overall, tremor amplitude and grip strength were negatively influenced by aging and positively influenced by exposure to young ovarian tissues/cells in aged female mice, and this positive influence was independent of ovarian germ cells and estradiol levels. These findings provide a strong incentive for further investigation of the influence of ovarian somatic tissue on health. In addition, changes in tremor amplitude may serve as an additional marker of biological age.


Asunto(s)
Estradiol , Temblor , Ratones , Femenino , Animales , Reproducción/fisiología , Células Germinativas , Envejecimiento/fisiología , Mamíferos
2.
J Gerontol A Biol Sci Med Sci ; 77(1): 75-83, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34528058

RESUMEN

The link between survival and reproductive function is demonstrated across many species and is under both long-term evolutionary pressures and short-term environmental pressures. Loss of reproductive function is common in mammals and is strongly correlated with increased rates of disease in both males and females. However, the reproduction-associated change in disease rates is more abrupt and more severe in women, who benefit from a significant health advantage over men until the age of menopause. Young women with early ovarian failure also suffer from increased disease risks, further supporting the role of ovarian function in female health. Contemporary experiments where the influence of young ovarian tissue has been restored in postreproductive-aged females with surgical manipulation were found to increase survival significantly. In these experiments, young, intact ovaries were used to replace the aged ovaries of females that had already reached reproductive cessation. As has been seen previously in primitive species, when the young mammalian ovaries were depleted of germ cells prior to transplantation to the postreproductive female, survival was increased even further than with germ cell-containing young ovaries. Thus, extending reproductive potential significantly increases survival and appears to be germ cell and ovarian hormone-independent. The current review will discuss historical and contemporary observations and theories that support the link between reproduction and survival and provide hope for future clinical applications to decrease menopause-associated increases in disease risks.


Asunto(s)
Envejecimiento , Reproducción , Animales , Femenino , Humanos , Masculino , Mamíferos , Menopausia , Ovario
3.
Exp Gerontol ; 126: 110686, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31400440

RESUMEN

Menopause is associated with a decline in overall health in women. One health aspect impacted is glucose metabolism. As women experience menopause, their metabolism declines dramatically. The current study addressed the influence of ovarian somatic cells on the improvement of metabolic health through transplantations of young, germ cell-depleted ovaries. The purpose of this study is to expand the understanding of female reproductive health on metabolism. Control mice were grouped by age and treatment mice were age-matched. Treatment mice were placed into one of three groups: 1) mice received germ cell-depleted ovaries, 2) mice received germ cell-containing ovaries, and 3) mice received ovarian somatic cells via injection directly to their original ovary. All mice were subject to a glucose tolerance test, during which a bolus of dextrose was administered, and blood glucose levels were collected and recorded. Mice were euthanized between 680 and 700 days. Metabolic results showed an improvement of glucose metabolism in both germ cell-depleted and germ cell-containing groups compared to controls. No significance difference was noted between the germ cell-containing and germ cell-depleted groups. Somatic cell injection groups also showed improved glucose metabolism compared to controls. This experiment has shown that post-reproductive health is positively influenced by reproductive status. Additionally, somatic cells play an important role in the restoration of health to post-reproductive mice.


Asunto(s)
Glucemia/metabolismo , Menopausia/fisiología , Ovario/fisiología , Animales , Femenino , Prueba de Tolerancia a la Glucosa , Menopausia/sangre , Ratones Endogámicos CBA , Ovario/trasplante , Óvulo/fisiología , Óvulo/trasplante
4.
J Clin Med ; 8(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609785

RESUMEN

Previously, transplantation of young, cycling, ovaries increased life and health span in post-reproductive female mice. The current study addressed the influence of ovarian germ cells in the improvement in health by performing transplantations of young, germ cell-depleted ovaries. The purpose of this study is to further the understanding of reproductive influences on aging health. Control mice were grouped by age. Treatment mice were age-matched and received either germ cell depleted ovaries or germ cell containing ovaries at 400 days of age. All groups underwent health span assays until sacrifice (treatment and age-matched control groups were between 680 and 700 days). Body composition results displayed an improvement of body composition in both treatment groups, compared to the controls, but no significant difference between the germ cell-depleted or germ cell-containing groups. Grip test results showed no improvement in musculoskeletal endurance and no change to mild loss of grip strength with both transplant groups compared to control groups. The research presented here suggests that reproductive status has a positive influence in post-reproductive health. A portion of this influence may be germ cell independent.

5.
Geroscience ; 41(1): 25-38, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30547325

RESUMEN

Cardiovascular disease, rare in premenopausal women, increases sharply at menopause and is typically accompanied by chronic inflammation. Previous work in our laboratory demonstrated that replacing senescent ovaries in post-reproductive mice with young, actively cycling ovaries restored many health benefits, including decreased cardiomyopathy and restoration of immune function. Our objective here was to determine if depletion of germ cells from young transplanted ovaries would alter the ovarian-dependent extension of life and health span. Sixty-day-old germ cell-depleted and germ cell-containing ovaries were transplanted to post-reproductive, 17-month-old mice. Mean life span for female CBA/J mice is approximately 644 days. Mice that received germ cell-containing ovaries lived 798 days (maximum = 815 days). Mice that received germ cell-depleted ovaries lived 880 days (maximum = 1046 days), 29% further past the time of surgery than mice that received germ cell-containing ovaries. The severity of inflammation was reduced in all mice that received young ovaries, whether germ cell-containing or germ cell-depleted. Aging-associated inflammatory cytokine changes were reversed in post-reproductive mice by 4 months of new-ovary exposure. In summary, germ cell depletion enhanced the longevity-extending effects of the young, transplanted ovaries and, as with germ cell-containing ovaries, decreased the severity of inflammation, but did so independent of germ cells. Based on these observations, we propose that gonadal somatic cells are programed to preserve the somatic health of the organism with the intent of facilitating future germline transmission. As reproductive potential decreases or is lost, the incentive to preserve the somatic health of the organism is lost as well.


Asunto(s)
Células Germinativas/fisiología , Inflamación/patología , Longevidad/fisiología , Ovario/fisiología , Reproducción/fisiología , Animales , Senescencia Celular/fisiología , Citocinas/sangre , Femenino , Ratones , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Trasplante de Órganos , Ovario/citología , Ovario/inmunología , Óvulo/fisiología , Receptores de Trasplantes
6.
J Vis Exp ; (132)2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29553494

RESUMEN

Ovarian transplantation was first conducted at Utah State University in 1963. In more recent work, heterochronic transplantation of mammalian ovaries is being used to investigate the health-protective effects of young ovaries in young females. The current procedures employ an orthotopic transplantation method, where allogenic ovaries are transplanted back to their original position in the ovarian bursa. This is in contrast to the more commonly used heterotopic transplantation of ovaries/ovarian tissue subcutaneously or under the kidney capsule. All three locations provide efficient revascularization of the transplanted tissues. However, orthotopic transplantation provides the ovary with the most natural signaling environment and is the only procedure that provides the opportunity for the animal to reproduce naturally post-operatively. One must take care to remove all endogenous ovarian tissue during the ovariectomy procedure. If any endogenous tissue remains or if only one ovary is removed, the transplanted tissue will remain dormant until the existing tissue becomes senescent. While revascularization of the transplanted ovaries occurs very quickly, the transplant recipient can take a considerable amount of time to adapt to a new hypothalamic/pituitary/gonadal/adrenal (HPG/A) axis signaling regime associated with the transplanted tissue. This normally takes about 100 days in the mouse. Therefore, transplantation experiments should be designed to accommodate this adaptation period. Typical results with ovarian transplantation will include changes in the health of the recipient that reflect the age of the transplanted ovary, rather than the chronological age of the recipient.


Asunto(s)
Ovariectomía/métodos , Ovario/trasplante , Animales , Femenino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...