Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 258(Pt 2): 128983, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159709

RESUMEN

In emergency treatment research, the focus on chitosan-based products for wound healing has been consistent. This study specifically explores a dressing made by mixing chitosan (CS) and poly (vinyl alcohol) PVA. Using electrospinning technology, nanofiber membranes of CS and PVA are created with the assistance of non-toxic and hydrophilic polyethylene oxide (PEO). The outcome is a new nanofibrous membrane loaded with mupirocin, designed for healing burn wounds. The study delves into the influence of PVA, CS, and PEO concentrations on the structural and chemical characteristics of the mats. This comprehensive exploration involves techniques such as Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM) imaging, Fourier Transform Infrared Spectrometry (FTIR analysis), and Contact angle measurements. Additionally, the research evaluates the antibacterial performance and biomedical behavior of the developed scaffolds. PEO proves beneficial in the electrospinning process, contributing to smoother fibers. Meanwhile, the addition of CS and mupirocin leads to formation of the thinner nanofibers (251 ± 5 µm and 263 ± 4 µm, respectively) and scaffolds with higher swelling (up to ∼3.5 times at 90 min). Notably, the (MTT) assay confirms the non-cytotoxicity of the fabricated nanofibers, with proliferations exceeding ∼85% for all samples. The crosslinked samples released the drug more slowly than the non-crosslinked dressings, with 80% of the scaffolds releasing the drug within 24 h. The in-vivo investigations suggested that the drug-containing scaffolds performed reliably and showed promise as a medical dressing for treating burn wounds.


Asunto(s)
Quemaduras , Quitosano , Nanofibras , Humanos , Mupirocina , Quitosano/química , Nanofibras/química , Polietilenglicoles/química , Antibacterianos/química , Vendajes , Quemaduras/tratamiento farmacológico , Alcohol Polivinílico/química
2.
Int J Biol Macromol ; 240: 124399, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059279

RESUMEN

An infected skin wound caused by external injury remains a serious challenge. Electrospun drug-loaded nanofibers with antibacterial properties based on biopolymers have been widely explored for wound healing. In this study, the double-layer CS/PVA/mupirocin (CPM) + CS/PVA/bupivacaine (CPB) mats were prepared by electrospinning method (20 % polymer weight) and then crosslinked with glutaraldehyde (GA) to optimize the water-resistant and biodegradation properties for wound dressing applications. The morphology of mats was characterized as defect-free and interconnected nanofibers by Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). Fourier Transform Infrared Spectrometry (FTIR) analysis also assessed the chemical structural properties. The porosity, surface wettability, and swelling degree of the dual-drug loaded mats were improved by about 20 %, 12°, and 200 % of the CS/PVA sample to provide a moist environment for efficient wound breathing and repairing. This highly porous mat facilitated the wound exudates absorption and air permeability excellently, reducing the chance of bacterial infections by inhibiting the growth of S. aureus bacterial colonies with a zone of 71.3 mm diameter. In vitro drug release results showed a high-burst release of 80 % and a continuous release profile for bupivacaine and mupirocin, respectively. MTT assay and in vivo tests indicated >90 % of cell viability and improvement in cell proliferation. It triply accelerated wound closure compared to the control group, reaching nearly full closure after 21 days as a potential clinical wound treatment.


Asunto(s)
Quitosano , Nanofibras , Mupirocina/farmacología , Quitosano/química , Alcohol Polivinílico/química , Nanofibras/química , Bupivacaína/farmacología , Liberación de Fármacos , Staphylococcus aureus , Antibacterianos/química , Vendajes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA