Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1716, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242928

RESUMEN

Bioactive peptide-based drugs have gained exceeding attention as promising treatments for infectious and oxidative-stress-related diseases, are exacerbated by the advent and spread of various multidrug-resistant bacteria and industrial lifestyles. Fish skin mucus has been recognized as a potential source of bioactive peptides, providing the first line of fish defense against invading pathogens which are targeted here to be explored as a new source of biopharmaceutics. Peptide fractions were isolated from the epidermal exudates of Caspian sand goby, Neogobius fluviatilis pallasi, by solid-phase extraction (SPE), ultrafiltration, and reversed-phase chromatography. The resulting fractions were characterized for their antibacterial and antioxidant properties, and results showed that the molecular weight fraction < 5 kDa represented the highest (p < 0.05) bacterial inhibition activity against Staphylococcus aureus and Bacillus subtilis as well as scavenging activity against DPPH and ABTS radicals. Overall, these results introduce the epidermal mucus of Caspian sand goby as a valuable source of bioactive compounds that can be considered new and efficient biopharmaceutics.


Asunto(s)
Perciformes , Ultrafiltración , Animales , Cromatografía de Fase Inversa , Epidermis , Antioxidantes/química , Péptidos/química , Antibacterianos/química
2.
Int J Biol Macromol ; 249: 126036, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37516225

RESUMEN

Here we present a novel machine-learning approach to predict protein aggregation propensity (PAP) which is a key factor in the formation of amyloid fibrils based on logistic regression (LR). Amyloid fibrils are associated with various neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD), which are caused by oxidative stress and impaired protein homeostasis. Accordingly, the paper uses a dataset of hexapeptides with known aggregation tendencies and eight physiochemical features to train and test the LR model. Also, it evaluates the performance of the LR model using F-measure and Matthews correlation coefficient (MCC) as metrics and compares it with other existing methods. Moreover, it investigates the effect of combining sequence and feature information in the prediction. In conclusion, the LR model with sequence and feature information achieves high F-measure (0.841) and MCC (0.6692), outperforming other methods and demonstrating its efficiency and reliability for PAP prediction. In addition, the overall performance of the concluded method was higher than the other known servers, for instance, Aggrescan, Metamyl, Foldamyloid, and PASTA 2.0. The LR model can be accessed at: https://github.com/KatherineEshari/Protein-aggregation-prediction.


Asunto(s)
Amiloide , Agregado de Proteínas , Modelos Logísticos , Reproducibilidad de los Resultados , Aprendizaje Automático
3.
Nanotechnology ; 34(31)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37141862

RESUMEN

Titanium dioxide nanotubes (TNT) are widely researched materials for the photocatalytic generation of free radicals, which are useful in wastewater treatment. We aimed to prepare Mo-doped TNT sheets, covered with a cellulose membrane to avoid TNT surface inactivation by protein adsorption. We studied the susceptibility of serum albumin (SA) bound to different molar ratios of palmitic acid (PA) to denaturation and fibrillation by this system, which is meant to mimic oxidative stress conditions such as non-alcoholic fatty liver disease. The results demonstrated that cellulose membrane-covered TNT successfully oxidized the SA, identified by structural changes to the protein. Increasing the molar ratio of PA to protein-enhanced thiol group oxidation while protecting the protein against structural changes. Finally, we propose that in this photocatalyzed oxidation system, the protein is oxidized by a non-adsorptive mechanism mediated by H2O2. Therefore, we suggest that this system could be used as a sustained oxidation system to oxidize biomolecules as well as potentially in wastewater treatment.


Asunto(s)
Peróxido de Hidrógeno , Nanotubos , Oxidación-Reducción , Estrés Oxidativo , Nanotubos/química , Titanio/química
4.
J Mol Graph Model ; 122: 108495, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37116337

RESUMEN

Exploring allosteric inhibition and the discovery of new inhibitor binding sites are important studies in protein regulation mechanisms and drug discovery. Structural and network-based analyses of trajectories resulting from molecular dynamics (MD) simulations have been developed to discover protein dynamics, landscape, functions, and allosteric regions. Here, an experimentally suggested non-competitive inhibitor, xanthene-11v, was considered to explore its allosteric inhibition mechanism in α-glucosidase MAL12. Comparative structural and network analyses were applied to eight 250 ns independent MD simulations, four of which were performed in the free state and four of which were performed in ligand-bound forms. Projected two-dimensional free energy landscapes (FEL) were constructed from the probabilistic distribution of conformations along the first two principal components. The post-simulation analyses of the coordinates, side-chain torsion angles, non-covalent interaction networks, network communities, and their centralities were performed on α-glucosidase conformations and the intermediate sub-states. Important communities of residues have been found that connect the allosteric site to the active site. Some of these residues like Thr307, Arg312, TYR344, ILE345, Phe357, Asp406, Val407, Asp408, and Leu436 are the key messengers in the transition pathway between allosteric and active sites. Evaluating the probability distribution of distances between gate residues including Val407 in one community and Phe158, and Pro65 in another community depicted the closure of this gate due to the inhibitor binding. Six macro states of protein were deduced from the topology of FEL and analysis of conformational preference of free and ligand-bound systems to these macro states shows a combination of lock-and-key, conformational selection, and induced fit mechanisms are effective in ligand binding. All these results reveal structural states, allosteric mechanisms, and key players in the inhibition pathway of α-glucosidase by xanthene-11v.


Asunto(s)
Proteínas , alfa-Glucosidasas , Regulación Alostérica , alfa-Glucosidasas/metabolismo , Ligandos , Simulación de Dinámica Molecular , Proteínas/química , Proteínas/metabolismo
5.
Antioxidants (Basel) ; 12(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36978983

RESUMEN

Oxidative stresses (OSs) are considered a pivotal factor in creating various pathophysiological conditions. Cells have been able to move forward by modulating numerous signaling pathways to moderate the defects of these stresses during their evolution. The company of Kelch-like ECH-associated protein 1 (Keap1) as a molecular sensing element of the oxidative and electrophilic stress and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) as a master transcriptional regulator of the antioxidant response makes a master cytoprotective antioxidant pathway known as the Keap1/Nrf2 pathway. This pathway is considered a dual-edged sword with beneficial features for both normal and cancer cells by regulating the gene expression of the array of endogenous antioxidant enzymes. Heme oxygenase-1 (HO-1), a critical enzyme in toxic heme removal, is one of the clear state indicators for the duality of this pathway. Therefore, Nrf2/HO-1 axis targeting is known as a novel strategy for cancer treatment. In this review, the molecular mechanism of action of natural antioxidants on lung cancer cells has been investigated by relying on the Nrf2/HO-1 axis.

6.
Appl Biochem Biotechnol ; 195(5): 3047-3066, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36508074

RESUMEN

In this study, the chitin of adult Mediterranean flour moth (Ephestia kuheniella) (Cht) was extracted and then converted to chitosan by deacetylation process to achieve the chitosan derived from E. kuheniella (Chsfm). The new chitosan-based scaffold was produced using the polyvinyl alcohol (PVA) co-electrospinning technique. The degree of deacetylation was obtained using the distillation-titration and Fourier transform infrared spectroscopy. The surface morphology and crystallinity index of Chsfm were observed using scanning electron microscopy and X-ray diffraction analysis, respectively, and compared with the commercial chitosan (Chsc). Thermogravimetric analysis was used to estimate two chitosans' water content and thermal stability. The average molecular mass analysis was performed using viscometry. Moreover, the minimum inhibitory concentration and DPPH assay were used to study the antimicrobial activity and antioxidant potential of the Chsfm, respectively. Accordingly, Chsfm was smoother with fewer pores and flakes than Chsc, and its crystallinity index was higher than Chsc. The water content and thermal stability were lower and similar for Chsfm compared to Chsc. The average molecular mass of Chsfm was ~ 5.8 kDa, making it classified as low molecular weight chitosan. The antimicrobial activity of Chsfm against a representative Gram-negative bacteria; E. coli resulted to be the same as Chsc. However, less effective than Chsc against a representative Gram-positive bacteria is S. aureus. The Chsfm/PVA ratio scaffold was optimized at 30:70 to fabricate a uniform nanofiber scaffold.


Asunto(s)
Antiinfecciosos , Quitosano , Mariposas Nocturnas , Animales , Quitosano/farmacología , Quitosano/química , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología , Agua/química , Alcohol Polivinílico/química , Espectroscopía Infrarroja por Transformada de Fourier
7.
Materials (Basel) ; 15(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36556567

RESUMEN

In this study, L-arginine (Arg) modified magnetite (Fe3O4) nanoparticles (RMNPs) were firstly synthesized through a one-step co-precipitation method, and then these aminated nanoparticles (NPs) were, again, coated by pre-oxidized dextran (Dext), in which aldehyde groups (DextCHO) have been introduced on the polymer chain successfully via a strong chemical linkage. Arg, an amino acid, acts as a mediator to link the Dext to a magnetic core. The as-synthesized Arg-modified and Dext-coated arginine modified Fe3O4 NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Both synthesized samples, XRD pattern and FT-IR spectra proved that the core is magnetite. FT-IR confirmed that the chemical bonds of Arg and Dext both exist in the samples. SEM images showed that the NPs are spherical and have an acceptable distribution size, and the VSM analysis indicated the superparamagnetic behavior of samples. The saturation magnetization was decreased after Dext coating, which confirms successive coating RMNPs with Text. In addition, the TGA analysis demonstrated that the prepared magnetic nanocomposites underwent various weight loss levels, which admitted the modification of magnetic cores with Arg and further coating with Dext.

8.
Sci Rep ; 12(1): 18332, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316461

RESUMEN

The relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) is so strong that scientists called it "brain diabetes". According to several studies, the critical factor in this relationship is brain insulin resistance. Due to the rapid global spread of both diseases, overcoming this cross-talk has a significant impact on societies. Long non-coding RNAs (lncRNAs), on the other hand, have a substantial impact on complex diseases due to their ability to influence gene expression via a variety of mechanisms. Consequently, the regulation of lncRNA expression in chronic diseases permits the development of innovative therapeutic techniques. However, developing a new drug requires considerable time and money. Recently repurposing existing drugs has gained popularity due to the use of low-risk compounds, which may result in cost and time savings. in this study, we identified drug repurposing candidates capable of controlling the expression of common lncRNAs in the cross-talk between DM and AD. We also utilized drugs that interfered with this cross-talk. To do this, high degree common lncRNAs were extracted from microRNA-lncRNA bipartite network. The drugs that interact with the specified lncRNAs were then collected from multiple data sources. These drugs, referred to as set D, were classified in to positive (D+) and negative (D-) groups based on their effects on the expression of the interacting lncRNAs. A feature selection algorithm was used to select six important features for D. Using a random forest classifier, these features were capable of classifying D+ and D- with an accuracy of 82.5%. Finally, the same six features were extracted for the most recently Food and Drug Administration (FDA) approved drugs in order to identify those with the highest likelihood of belonging to D+ or D-. The most significant FDA-approved positive drugs, chromium nicotinate and tapentadol, were presented as repurposing candidates, while cefepime and dihydro-alpha-ergocryptine were recommended as significant adverse drugs. Moreover, two natural compounds, curcumin and quercetin, were recommended to prevent this cross-talk. According to the previous studies, less attention has been paid to the role of lncRNAs in this cross-talk. Our research not only did identify important lncRNAs, but it also suggested potential repurposed drugs to control them.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Preparaciones Farmacéuticas , MicroARNs/genética , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética
9.
Biomedicines ; 10(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36289931

RESUMEN

Reactive oxygen species (ROS) are identified to control the expression and activity of various essential signaling intermediates involved in cellular proliferation, apoptosis, and differentiation. Indeed, ROS represents a double-edged sword in supporting cell survival and death. Many common pathological processes, including various cancer types and neurodegenerative diseases, are inflammation and oxidative stress triggers, or even initiate them. Keap1-Nrf2 is a master antioxidant pathway in cytoprotective mechanisms through Nrf2 target gene expression. Activation of the Nfr2 pathway benefits cells in the early stages and reduces the level of ROS. In contrast, hyperactivation of Keap1-Nrf2 creates a context that supports the survival of both healthy and cancerous cells, defending them against oxidative stress, chemotherapeutic drugs, and radiotherapy. Considering the dual role of Nrf2 in suppressing or expanding cancer cells, determining its inhibitory/stimulatory position and targeting can represent an impressive role in cancer treatment. This review focused on Nrf2 modulators and their roles in sensitizing breast cancer cells to chemo/radiotherapy agents.

10.
Front Aging Neurosci ; 14: 955461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092798

RESUMEN

Background: Recent research has investigated the connection between Diabetes Mellitus (DM) and Alzheimer's Disease (AD). Insulin resistance plays a crucial role in this interaction. Studies have focused on dysregulated proteins to disrupt this connection. Non-coding RNAs (ncRNAs), on the other hand, play an important role in the development of many diseases. They encode the majority of the human genome and regulate gene expression through a variety of mechanisms. Consequently, identifying significant ncRNAs and utilizing them as biomarkers could facilitate the early detection of this cross-talk. On the other hand, computational-based methods may help to understand the possible relationships between different molecules and conduct future wet laboratory experiments. Materials and methods: In this study, we retrieved Genome-Wide Association Study (GWAS, 2008) results from the United Kingdom Biobank database using the keywords "Alzheimer's" and "Diabetes Mellitus." After excluding low confidence variants, statistical analysis was performed, and adjusted p-values were determined. Using the Linkage Disequilibrium method, 127 significant shared Single Nucleotide Polymorphism (SNP) were chosen and the SNP-SNP interaction network was built. From this network, dense subgraphs were extracted as signatures. By mapping each signature to the reference genome, genes associated with the selected SNPs were retrieved. Then, protein-microRNA (miRNA) and miRNA-long non-coding RNA (lncRNA) bipartite networks were built and significant ncRNAs were extracted. After the validation process, by applying the scoring function, the final protein-miRNA-lncRNA tripartite network was constructed, and significant miRNAs and lncRNAs were identified. Results: Hsa-miR-199a-5p, hsa-miR-199b-5p, hsa-miR-423-5p, and hsa-miR-3184-5p, the four most significant miRNAs, as well as NEAT1, XIST, and KCNQ1OT1, the three most important lncRNAs, and their interacting proteins in the final tripartite network, have been proposed as new candidate biomarkers in the cross-talk between DM and AD. The literature review also validates the obtained ncRNAs. In addition, miRNA/lncRNA pairs; hsa-miR-124-3p/KCNQ1OT1, hsa-miR-124-3p/NEAT1, and hsa-miR-124-3p/XIST, all expressed in the brain, and their interacting proteins in our final network are suggested for future research investigation. Conclusion: This study identified 127 shared SNPs, 7 proteins, 15 miRNAs, and 11 lncRNAs involved in the cross-talk between DM and AD. Different network analysis and scoring function suggested the most significant miRNAs and lncRNAs as potential candidate biomarkers for wet laboratory experiments. Considering these candidate biomarkers may help in the early detection of DM and AD co-occurrence.

11.
Rev Neurosci ; 33(7): 803-817, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35363449

RESUMEN

Serum albumin (SA) exists in relatively high concentrations, in close contact with most cells. However, in the adult brain, except for cerebrospinal fluid (CSF), SA concentration is relatively low. It is mainly produced in the liver to serve as the main protein of the blood plasma. In the plasma, it functions as a carrier, chaperon, antioxidant, source of amino acids, osmoregulator, etc. As a carrier, it facilitates the stable presence and transport of the hydrophobic and hydrophilic molecules, including free fatty acids, steroid hormones, medicines, and metal ions. As a chaperon, SA binds to and protects other proteins. As an antioxidant, thanks to a free sulfhydryl group (-SH), albumin is responsible for most antioxidant properties of plasma. These functions qualify SA as a major player in, and a mirror of, overall health status, aging, and neurodegeneration. The low concentration of SA is associated with cognitive deterioration in the elderly and negative prognosis in multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). SA has been shown to be structurally modified in neurological conditions such as Alzheimer's disease (AD). During blood-brain barrier damage albumin enters the brain tissue and could trigger epilepsy and neurodegeneration. SA is able to bind to the precursor agent of the AD, amyloid-beta (Aß), preventing its toxic effects in the periphery, and is being tested for treating this disease. SA therapy may also be effective in brain rejuvenation. In the current review, we will bring forward the prominent properties and roles of SA in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Albúmina Sérica Humana , Adulto , Anciano , Enfermedad de Alzheimer/metabolismo , Aminoácidos , Péptidos beta-Amiloides/metabolismo , Antioxidantes , Ácidos Grasos no Esterificados , Hormonas , Humanos , Albúmina Sérica , Albúmina Sérica Humana/metabolismo
12.
J Phys Chem B ; 126(8): 1640-1654, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090112

RESUMEN

Transthyretin (TTR) aggregation via misfolding of a mutant or wild-type protein leads to systemic or partial amyloidosis (ATTR). Here, we utilized variable biophysical assays to characterize two distinct aggregation pathways for mTTR (a synthesized monomer TTR incapable of association into a tetramer) at pH 4.3 and also pH 7.4 with agitation, referred to as mTTR aggregation and fibrillation, respectively. The findings suggest that early-stage conformational changes termed monomer activation here determine the aggregation pathway, resulting in developing either amorphous aggregates or well-organized fibrils. Less packed partially unfolded monomers consisting of more non-regular secondary structures that were rapidly produced via a mildly acidic condition form amorphous aggregates. Meanwhile, more hydrophobic and packed monomers consisting of rearranged ß sheets and increased helical content developed well-organized fibrils. Conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with leucine and glutamine (L-SPIONs and G-SPIONs in order) via a trimethoxysilane linker provided the chance to study the effect of hydrophobic/hydrophilic surfaces on mTTR aggregation. The results indicated a powerful inhibitory effect of hydrophobic L-SPIONs on both mTTR aggregation and fibrillation. Monomer depletion was introduced as the governing mechanism for inhibiting mTTR aggregation, while a chaperone-like property of L-SPIONs by maintaining an mTTR native structure and adsorbing oligomers suppressed the progression of further fibril formation.


Asunto(s)
Aminoácidos , Amiloide , Amiloide/química , Nanopartículas Magnéticas de Óxido de Hierro , Chaperonas Moleculares/metabolismo , Conformación Proteica en Lámina beta , Estructura Secundaria de Proteína
13.
Sci Total Environ ; 810: 152291, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902406

RESUMEN

The health effects of ambient air particulate matter with a diameter of ≤2.5 µm (PM2.5) on the central nervous system are well known and the induced oxidative stress has been shown as their main neuropathologic outcome. Ambient air PM2.5 sampling methods mostly use air sampler systems that collect PM2.5 on filters, which is followed by a PM2.5 extraction approach. Inefficient extraction may lead to compositional bias and unreal interpretation of the results. This study aimed to compare our proposed multi-solvent extraction (MSE) approach for PM2.5 extraction with a conventional aqueous extraction (AqE) method using the analysis of oxidative effects and cytotoxicity in the human neuroblastoma SH-SY5Y cell line. Ambient PM2.5 samples were collected from an urban traffic location in Tehran city, the capital of Iran, using a high-volume sampler. The developed MSE method was proved to have superior advantages over the AqE method including an increased extraction efficiency (as much as 96 against 48% for PMms and PMaq, respectively), and decreased artifacts and compositional biases. Ambient PM2.5, besides PMms and PMaq were analyzed for water-soluble ions, metals, and major elements. Dithiothreitol, ascorbic acid, lipid peroxidation, and cell viability assays on SH-SY5Y cells represented the significantly higher oxidative potential for PMms compared to PMaq. The increased cytotoxicity may occur because of the increased oxidative potential of PMms and possibly is associated with higher efficiency of the MSE over the AqE method for removal of total redox-active PM components.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Monitoreo del Ambiente , Humanos , Irán , Oxidación-Reducción , Estrés Oxidativo , Material Particulado/análisis , Material Particulado/toxicidad , Solventes
14.
Molecules ; 26(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34946740

RESUMEN

Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells' redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.


Asunto(s)
Antioxidantes/uso terapéutico , Curcumina/uso terapéutico , Complicaciones de la Diabetes , Hipoxia , Transducción de Señal/efectos de los fármacos , Animales , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/metabolismo , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/etiología , Hipoxia/metabolismo
15.
Antioxidants (Basel) ; 9(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291560

RESUMEN

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.

16.
Talanta ; 211: 120722, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32070572

RESUMEN

Herein, an electrochemical label-free biosensor designed for the detection of glycated albumin (GA) using reduced graphene oxide/Au nanoparticles (RGO/AuNPs) modified by anti-GA aptamer. For fast and simple modification of the electrode, the aptamer chain was thiolated. Transition electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) techniques were used to the characterization of synthesized materials. Structural analysis of nanomaterials shows that graphene sheets were synthesized very fine by average thickness of 2.5 nm and Au nanoparticles distributed on the surface of graphene sheets uniformly. Cyclic voltammetry (CV) square wave voltammetry (SWV) and impedance spectroscopy (EIS) were used to electrochemical study of the decorated electrode. Electrochemical studies described the potential of fabricated rGO/AuNPs-aptamer electrode to selectively determine GA properly in buffer solution at the range of 2-10 µg mL-1 by the detection limit of 0.07 µg. mL-1 for GA.

17.
PLoS One ; 14(4): e0214725, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30986221

RESUMEN

Diabetic hyperglycemia provokes glycation of haemoglobin (Hb), an abundant protein in red blood cells (RBCs), by increasing its exposure to carbohydrates. Acetylsalicylic acid (ASA; Aspirin) is one of the first agents, which its antiglycation effect was witnessed. Although the precise molecular mechanism of action of ASA on protein glycation is not indisputably perceived, acetylation as its main molecular mechanism has been proposed. This report aims to unravel the meticulous mechanism of action of ASA by using two ASA analogues; benzoic acid (BA) and para-nitrobenzoic acid (NBA), despite their lack of acetyl group. In this regard, the inhibitory effect of these two chemicals in comparison with ASA on Hb fructation is reported. UV-visible spectroscopy, intrinsic advanced glycation end products (AGE) fluorescence spectroscopy, extrinsic thioflavin T (ThT) binding fluorescence spectroscopy, 2,4,6-trinitrobenzenesulfonic acid (TNBSA) assay, and single cell gel electrophoresis (SCGE) were used to explore the effects of BA and NBA in comparison with aforementioned chemicals in the context of protein glycation. In spite of the lack of acetyl substitution, NBA is reported as a novel agent with prominent inhibitory efficacy than ASA on the protein glycation. This fact brings up a possible new mechanism of action of ASA and reconsiders acetylation as the sole mechanism of inhibition of protein glycation.


Asunto(s)
Aspirina/química , Hemoglobina Glucada/análisis , Hemoglobinas/química , Acetilación , Animales , Ácido Benzoico/química , Bovinos , Nitrobenzoatos/química , Análisis de la Célula Individual , Espectrometría de Fluorescencia
18.
Int J Biol Macromol ; 123: 1297-1304, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30336241

RESUMEN

Amyloid fibrils were produced in a solution of bovine serum albumin (BSA) in buffer solution in the presence of fructose. The solution was incubated for 20 weeks in the dark. We used glycation induced bovine serum albumin in which fibrilogenesis (nano fibrils) followed by using fluorescence (Thioflavin T), Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) to achieve the size and morphology of fibrils. A novel electrochemical biosensor for the detection of hydrogen peroxide was developed based on immobilizing poly (alizarin yellow R) and amyloid nano-fibrils on glassy carbon electrode (PAYR/AMLNFibs/GCE). The electrocatalytic response of the biosensor was proportional to the hydrogen peroxide concentration in the range of 1 µM to 2.2 mM with a limit of detection and sensitivity of 290 nM and 0.024 µA/µM, respectively. The modified electrode demonstrated many advantages such as high sensitivity, low detection of limit and excellent catalytic activity.


Asunto(s)
Amiloide/química , Compuestos Azo/química , Electroquímica/métodos , Peróxido de Hidrógeno/análisis , Nanocompuestos/química , Nanofibras/química , Animales , Técnicas Biosensibles , Catálisis , Bovinos , Espectroscopía Dieléctrica , Dispersión Dinámica de Luz , Electrodos , Fluorescencia , Glicosilación , Leche/química , Nanofibras/ultraestructura , Oxidación-Reducción , Reproducibilidad de los Resultados , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia
19.
Int J Biol Macromol ; 122: 359-366, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359660

RESUMEN

Laccase was immobilized using a combinatorial strategy of cross-linking and entrapping in mesoporous silica to prepare entrapped enzyme species including simply adsorbed, entrapped cross-linked enzyme (E-CLE) and entrapped cross-linked enzyme aggregate (E-CLEA) to explore their potential in phenol removal. Parameters including pH, temperature, time and cross-linker concentration were optimized to achieve an immobilized product with highest laccase specific activity. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the immobilization products. The storage and operational stability analysis were also carried out. Accordingly, E-CLEAs showed improved thermal and pH stabilities and activity retention in hydrophobic and hydrophilic solvents. Moreover, based on the resulted half-lives (t1/2) for free and insoluble laccases, the improved storage stability is reported for E-CLEAs at 1.71 and 20.88 days for them, respectively. In addition, the immobilized biocatalyst exhibited good operational stability and reusability through maintaining up to 79% of its initial activity after 20 cycles of successive operations. In conclusion, E-CLEAs have catalytic potential in efficient phenol removal and advantages of the insolubilized form of laccase as E-CLEAs make it an appealing system in applications such as possible treatment of phenol-contaminated wastewater.


Asunto(s)
Biocatálisis , Lacasa/química , Lacasa/metabolismo , Fenol/aislamiento & purificación , Fenol/metabolismo , Agregado de Proteínas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Porosidad , Dióxido de Silicio/química , Temperatura , Trametes/enzimología , Administración de Residuos
20.
PLoS One ; 13(1): e0189754, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29357364

RESUMEN

This study investigated for the first time the molecular effectiveness of 'aroma' from three small molecules including a phenol (phenyl ethyl alcohol; PEA) and an aldehyde (cinnamaldehyde; Cin) both containing an aromatic ring, and a diamine (N,N,N,N'- Tetramethylethylenediamine; TEMED) at two different amounts (small; S and large; L) in preventing hen egg white lysozyme (HEWL) amyloid fibril formation using Thioflavin T and Nile red fluorescence assays, circular dichroism spectroscopy, SDS-polyacrylamide gel electrophoresis, atomic force microscopy, dynamic light scattering and HEWL activity test. Interestingly, the results revealed that (1) the aroma of PEA, identified as an active constituent of Rosa damascena, prevented fibril formation since PEA-L was able to trap the oligomeric form of HEWL in contrast to PEA-S where protofibrils but not mature fibrils were formed; (2) Cin, previously shown to prevent fibril formation in the liquid form, was also shown to do so in the aroma form by producing protofibrils and not mature fibrils in both Cin- L and Cin-S aroma forms and (3) the aroma of TEMED-L was able to retain HEWL's native structure completely and prevented both aggregation and fibril formation, while TEMED-S prevented HEWL fibril formation and instead directed the pathway towards amorphous aggregate formation. Furthermore, the ability to trap oligomeric species (by PEA-L aroma) is of great importance for further research as it provides routes for preventing the formation of toxic oligomeric intermediates along the fibrillation pathway. Last but not least, the novelty of this in vitro study on the effect of aroma at the molecular level with a unique experimental set-up using HEWL as a model protein in assessing amyloid fibril formation paves the way for more and detailed studies on the importance of aroma producing molecules and their effects.


Asunto(s)
Amiloide/metabolismo , Clara de Huevo , Muramidasa/metabolismo , Odorantes , Animales , Pollos , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...