Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Rev Sci Instrum ; 91(10): 105113, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33138555

RESUMEN

A novel design of an electrochemical anodization cell dedicated to the synthesis of mesoporous, single-crystalline silicon is presented. First and foremost, the design principle follows user safety since electrochemical etching of silicon requires highly hazardous electrolytes based on hydrofluoric (HF) acid. The novel cell design allows for safe electrolyte handling prior, during, and post-etching. A peristaltic pump with HF-resistant fluoroelastomer tubing transfers electrolytes between dedicated reservoirs and the anodization cell. Due to the flexibility of the cell operation, different processing conditions can be realized providing a large parameter range for the attainable sample thickness, its porosity, and the mean pore size. Rapid etching on the order of several minutes to synthesize micrometer-thick porous silicon epilayers on bulk silicon is possible as well as long-time etching with continuous, controlled electrolyte flow for several days to prepare up to 1000 µm thick self-supporting porous silicon membranes. A highly adaptable, LabVIEW™-based control software allows for user-defined etching profiles.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 2): 127-133, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830736

RESUMEN

A new (N2H4)WO3 compound has been obtained by mixing WO3 and aqueous hydrazine solution at room temperature for 24 h. The reaction is catalyzed by the presence of lithium. X-ray, synchrotron and neutron diffraction techniques have shown that the material crystallizes in trigonal space group P3221 (No. 154). Chains of distorted WO4 tetrahedra extend along the a axis of the unit cell, linked by a corner-sharing oxygen atom: the N2H4 are in the voids between them. The thermal characterization shows that this new compound is stable up to 220°C, greatly beyond the boiling point of N2H4 (114°C); thus making it a promising candidate for catalysis or trapping applications.

3.
Geobiology ; 15(6): 798-816, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28866873

RESUMEN

Anoxygenic phototrophic bacteria utilize ancient metabolic pathways to link sulfur and iron metabolism to the reduction of CO2 . In meromictic Lake Cadagno, Switzerland, both purple sulfur (PSB) and green sulfur anoxygenic phototrophic bacteria (GSB) dominate the chemocline community and drive the sulfur cycle. PSB and GSB fix carbon utilizing different enzymatic pathways and these fractionate C-isotopes to different extents. Here, these differences in C-isotope fractionation are used to constrain the relative input of various anoxygenic phototrophs to the bulk community C-isotope signal in the chemocline. We sought to determine whether a distinct isotopic signature of GSB and PSB in the chemocline persists in the settling fraction and in the sediment. To answer these questions, we also sought investigated C-isotope fractionation in the water column, settling material, and sediment of Lake Cadagno, compared these values to C-isotope fractionation of isolated anoxygenic phototroph cultures, and took a mass balance approach to investigate relative contributions to the bulk fractionation signature. We found a large C-isotope fractionation between dissolved inorganic carbon (DIC) and particulate organic carbon (POC) in the Lake Cadagno chemocline. This large fractionation between the DIC and POC was also found in culture experiments carried out with anoxygenic phototrophic bacteria isolated from the lake. In the Lake Cadagno chemocline, anoxygenic phototrophic bacteria controlled the bulk C-isotope fractionation, but the influence of GSB and PSB differed with season. Furthermore, the contribution of PSB and GSB to bulk C-isotope fractionation in the chemocline could be traced in the settling fraction and in the sediment. Taken together with other studies, such as lipid biomarker analyzes and investigations of other stratified lakes, these results offer a firmer understanding of diagenetic influences on bacterial biomass.


Asunto(s)
Bacterias Anaerobias/metabolismo , Isótopos de Carbono/metabolismo , Sedimentos Geológicos/análisis , Lagos/química , Compuestos Orgánicos/análisis , Lagos/microbiología , Procesos Fototróficos , Suiza
4.
Anal Biochem ; 484: 154-61, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26049098

RESUMEN

Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized onto immobilized artificial membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary, resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC (U87MG) column, and the binding affinities (Kd) determined were 1.08±0.49 and 0.0086±0.0006µM, respectively, consistent with previously reported values. Furthermore, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX, and rotenone. In addition, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC (U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Ligandos , Membranas Artificiales , Microscopía Confocal
5.
Opt Express ; 23(1): 301-11, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25835677

RESUMEN

A neutron transport system for the planned imaging instrument ODIN at the future European Spallation Source (ESS) based on neutron optical components was designed and optimized. Different ways of prompt pulse suppression were studied. The spectral performance of the optimal neutron guide configuration is presented. In addition, the influence of the gaps in the guide system needed for the required chopper configuration was investigated. Given that the requirements for an imaging instrument located on a long guide system and hosting a complex chopper system are extremely demanding in terms of spectral and divergence needs, this study can be beneficial for a wide range of instruments in various ways.

6.
Rev Sci Instrum ; 86(2): 025110, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25725891

RESUMEN

We describe the upgrade of the neutron resonance spin-echo setup at the cold neutron triple-axis spectrometer FLEXX at the BER II neutron source at the Helmholtz-Zentrum Berlin. The parameters of redesigned key components are discussed, including the radio frequency (RF) spin-flip coils, the magnetic shield, and the zero field coupling coils. The RF-flippers with larger beam windows allow for an improved neutron flux transfer from the source to the sample and further to the analyzer. The larger beam cross sections permit higher coil inclination angles and enable measurements on dispersive excitations with a larger slope of the dispersion. Due to the compact design of the spin-echo units in combination with the increased coil tilt angles, the accessible momentum-range in the Larmor diffraction mode is substantially enlarged. In combination with the redesigned components of the FLEXX spectrometer, including the guide, the S-bender polarizer, the double focusing monochromator, and a Heusler crystal analyzer, the count rate increased by a factor of 15.5, and the neutron beam polarization is enhanced. The improved performance extends the range of feasible experiments, both for inelastic scattering on excitation lifetimes in single crystals, and for high-resolution Larmor diffraction. The experimental characterization of the instrument components demonstrates the reliable performance of the new neutron resonance spin-echo option, now available for the scientific community at FLEXX.

7.
Artículo en Inglés | MEDLINE | ID: mdl-24780640

RESUMEN

Cellular membrane affinity chromatography stationary phases have been extensively used to characterize immobilized proteins and provide a direct measurement of multiple binding sites, including orthosteric and allosteric sites. This review will address the utilization of immobilized cellular and tissue fragments to characterize multiple transmembrane proteins co-immobilized onto a stationary phase. This approach will be illustrated by demonstrating that multiple transmembrane proteins were immobilized from cell lines and tissue fragments. In addition, the immobilization of individual compartments/organelles within a cell will be discussed and the changes in the proteins binding/kinetics based on their location.


Asunto(s)
Proteínas Inmovilizadas/química , Proteínas de la Membrana/química , Sitios de Unión/fisiología , Cromatografía de Afinidad/métodos , Humanos , Proteínas Inmovilizadas/metabolismo , Cinética , Ligandos , Proteínas de la Membrana/metabolismo , Unión Proteica/fisiología
8.
J Chromatogr A ; 1339: 80-85, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24642394

RESUMEN

Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP-Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN-229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN-229)) and (CMAC(LN-229)), respectively. Pgp, MRP1 and BCRP transporters co-immobilized on both columns were characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs. 3.7µM), verapamil (0.6 vs. 0.7µM) and prazosin (0.099 vs. 0.033µM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of eight compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN-229) column and decreased it (-5%) on the NMAC(LN-229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/análisis , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas de Neoplasias/análisis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Cromatografía de Afinidad/métodos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Estrona/análogos & derivados , Estrona/química , Etopósido/química , Glioblastoma/metabolismo , Humanos , Ligandos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Prazosina/química , Unión Proteica , Verapamilo/química
9.
J Phys Condens Matter ; 25(21): 216008, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23649209

RESUMEN

We study the strongly anisotropic quasi-one-dimensional S = 1 quantum magnet NiCl2·4SC(NH2)2 using elastic and inelastic neutron scattering. We demonstrate that a magnetic field splits the excited doublet state and drives the lower doublet state to zero energy at a critical field Hc1. For Hc1 < H < Hc2, where Hc2 indicates the transition to a fully magnetized state, three-dimensional magnetic order is established with the AF moment perpendicular to the magnetic field. We mapped the temperature/magnetic field phase diagram, and we find that the total ordered magnetic moment reaches m(tot) = 2.1 µB at the field µ(0)H = 6 T and is thus close to the saturation value of the fully ordered moment. We study the magnetic spin dynamics in the fully magnetized state for H > Hc2, and we demonstrate the presence of an AF interaction between Ni(2+) on the two interpenetrating sublattices. In the antiferromagnetically ordered phase, the spin-waves that develop from the lower-energy doublet are split into two modes. This is most likely the result of the presence of the AF interaction between the interpenetrating lattices.

10.
J Pharm Biomed Anal ; 72: 159-62, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23146242

RESUMEN

BCRP expression has been reported in glioblastoma cell lines and clinical specimens and has been shown to be expressed both in purified nuclei and in the soluble cytoplasmic fraction. To date, the nuclear BCRP has not been characterized. Our laboratory has previously developed an online chromatographic approach for the study of binding interactions between ligands and protein, cellular membrane affinity chromatography. To this end, we have immobilized the nuclear membrane fragments onto an immobilized artificial membrane stationary phase (IAM), resulting in the nuclear membrane affinity chromatography (NMAC) column. Initial characterization was carried out on the radio flow detector, as well as the LC-MSD, using frontal displacement chromatography techniques. Etoposide, a substrate for BCRP, was initially tested, to determine the functional immobilization of BCRP. Frontal displacement experiments with multiple concentrations of etoposide were run and the binding affinity was determined to be 4.54 µM, which is in close agreement with literature. The BCRP was fully characterized on the NMAC column and this demonstrates that for the first time the nuclear membranes have been successfully immobilized.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Cromatografía de Afinidad/métodos , Proteínas de Neoplasias/química , Membrana Nuclear/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/análisis , Neoplasias de la Mama/química , Línea Celular , Membrana Celular/química , Etopósido/química , Femenino , Humanos , Ligandos , Membranas Artificiales , Proteínas de Neoplasias/análisis , Unión Proteica
11.
Science ; 327(5962): 177-80, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20056884

RESUMEN

Quantum phase transitions take place between distinct phases of matter at zero temperature. Near the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of the system. A symmetry described by the E8 Lie group with a spectrum of eight particles was long predicted to appear near the critical point of an Ising chain. We realize this system experimentally by using strong transverse magnetic fields to tune the quasi-one-dimensional Ising ferromagnet CoNb2O6 (cobalt niobate) through its critical point. Spin excitations are observed to change character from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a ratio that approaches the golden mean predicted for the first two meson particles of the E8 spectrum. Our results demonstrate the power of symmetry to describe complex quantum behaviors.

12.
Phys Rev Lett ; 102(10): 107204, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19392156

RESUMEN

We measure by inelastic neutron scattering the spin excitation spectra as a function of applied magnetic field in the quantum spin-ladder material (C5H12N)2CuBr4. Discrete magnon modes at low fields in the quantum disordered phase and at high fields in the saturated phase contrast sharply with a spinon continuum at intermediate fields characteristic of the Luttinger-liquid phase. By tuning the magnetic field, we drive the fractionalization of magnons into spinons and, in this deconfined regime, observe both commensurate and incommensurate continua.

13.
Phys Rev Lett ; 101(10): 107201, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18851251

RESUMEN

We report bulk magnetization, and elastic and inelastic neutron scattering measurements under an external magnetic field H on the weakly coupled distorted kagome system, Cu2(OD)3Cl. Our results show that the ordered state below 6.7 K is a canted antiferromagnet and consists of large antiferromagnetic ac components and smaller ferromagnetic b components. By first-principles calculations and linear spin wave analysis, we present a simple spin Hamiltonian with nonuniform nearest neighbor exchange interactions resulting in a system of coupled spin trimers with a single-ion anisotropy that can qualitatively reproduce the spin dynamics of Cu2(OD)3Cl.

14.
Geobiology ; 6(5): 425-35, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18715228

RESUMEN

The search for life can only be as successful as our understanding of the tools we use to search for it. Here we present new sulphur isotope data (32S, 33S, 34S, 36S) from a variety of modern marine environments and use these observations, along with previously published work, to contribute to this search. Specifically, we use these new data to gain a sense of life's influences on the sulphur isotope record and to distinguish these biologically influenced signatures from their non-biological counterparts. This treatment extends sulphur isotope analyses beyond traditional (34S/32S) measures and employs trace isotope relationships (33S/32S, 36S/32S), as the inclusion of these isotopes provides unique information about biology and its role in the sulphur cycle through time. In the current study we compare and contrast isotope effects produced by sulphur-utilizing microorganisms (experimental), modern and ancient sedimentary records (observational) and non-biological reactions (theoretical). With our collective search for life now extending to neighbouring planets, we present this study as a first step towards more fully understanding the capability of the sulphur isotope system as a viable tool for life detection, both on Earth and beyond.


Asunto(s)
Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Isótopos de Azufre/análisis , Isótopos de Azufre/metabolismo , Radioisótopos de Azufre/análisis , Radioisótopos de Azufre/metabolismo
15.
Phys Rev Lett ; 100(3): 037206, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18233035

RESUMEN

Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu(2)Cl(4).D(8)C(4)SO(2). Contrary to previously conjectured models that relied on bond-alternating nearest-neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a S=1/2 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations.

16.
Science ; 319(5869): 1509-12, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18292306

RESUMEN

The momentum and temperature dependence of the lifetimes of acoustic phonons in the elemental superconductors lead and niobium were determined by resonant spin-echo spectroscopy with neutrons. In both elements, the superconducting energy gap extracted from these measurements was found to converge with sharp anomalies originating from Fermi-surface nesting (Kohn anomalies) at low temperatures. The results indicate electron many-body correlations beyond the standard theoretical framework for conventional superconductivity. A possible mechanism is the interplay between superconductivity and spin- or charge-density-wave fluctuations, which may induce dynamical nesting of the Fermi surface.

17.
Nat Mater ; 6(11): 853-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17721540

RESUMEN

A three-dimensional system of interacting spins typically develops static long-range order when it is cooled. If the spins are quantum (S=1/2), however, novel quantum paramagnetic states may appear. The most highly sought state among them is the resonating-valence-bond state, in which every pair of neighbouring quantum spins forms an entangled spin singlet (valence bonds) and these singlets are quantum mechanically resonating among themselves. Here we provide an experimental indication for such quantum paramagnetic states existing in frustrated antiferromagnets, Zn(x)Cu(4-x)(OD)(6)Cl(2), where the S=1/2 magnetic Cu2+ moments form layers of a two-dimensional kagome lattice. We find that in Cu(4)(OD)(6)Cl(2), where distorted kagome planes are weakly coupled, a dispersionless excitation mode appears in the magnetic excitation spectrum below approximately 20 K, whose characteristics resemble those of quantum spin singlets in a solid state, known as a valence-bond solid, that breaks translational symmetry. Doping with non-magnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens the interplane coupling but also dilutes the magnetic occupancy of the kagome lattice. The valence-bond-solid state is suppressed, and for ZnCu(3)(OD)(6)Cl(2), where the kagome planes are undistorted and 90% occupied by the Cu2+ ions, the low-energy spin fluctuations become featureless.

18.
Phys Rev Lett ; 98(16): 167202, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17501456

RESUMEN

The weakly coupled quasi-one-dimensional spin ladder compound (CH3)2CHNH3CuCl3 is studied by neutron scattering in magnetic fields exceeding the critical field of Bose-Einstein condensation of magnons. Commensurate long-range order and the associated Goldstone mode are detected and found to be similar to those in reference to spin-dimer materials. However, for the upper two massive magnon branches, the observed behavior is totally different, culminating in a drastic collapse of excitation bandwidth beyond the transition point.

19.
Phys Rev Lett ; 97(5): 057202, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-17026137

RESUMEN

The reversal of magnetic moments of nanoparticles in concentrated Co ferrofluids was monitored in an oscillating magnetic field by new time-resolved stroboscopic small-angle neutron-scattering techniques. Time resolution in the micros range was achieved by using a pulsed beam technique, TISANE, while in continuous mode resolution was limited by the wavelength spread to about 1 ms. The frequency dependence of anisotropic scattering patterns has been modeled using Langevin dynamics. The dynamics follows a two step mechanism: field-induced ordering is governed by fast Brownian rotation of nanoparticles with a characteristic time of about 160 micros. Magnetic relaxation of locally ordered domains of about 100 nm in size takes place within a few seconds by Brownian rotation or by Néel type rotation of magnetic moments.

20.
Science ; 312(5782): 1926-9, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16809534

RESUMEN

We used a neutron spin-echo method with microelectron-volt resolution to determine the lifetimes of spin waves in the prototypical antiferromagnet MnF2 over the entire Brillouin zone. A theory based on the interaction of spin waves (magnons) with longitudinal spin fluctuations provides an excellent, parameter-free description of the data, except at the lowest momenta and temperatures. This is surprising, given the prominence of alternative theories based on magnon-magnon interactions in the literature. The results and technique open up a new avenue for the investigation of fundamental concepts in magnetism. The technique also allows measurement of the lifetimes of other elementary excitations, such as lattice vibrations, throughout the Brillouin zone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...