Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Parasitol Parasites Wildl ; 14: 308-320, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898232

RESUMEN

Helminth parasite infection can impose major consequences on host fitness. Several factors, including individual characteristics of hosts, environmental conditions, and patterns of coinfection, are thought to drive variation in parasite risk. Here, we report on four key drivers of parasite infection-phase of reproduction, steroid hormone profiles, rainfall, and patterns of coinfection-in a population of wild female chacma baboons (Papio ursinus) in South Africa. We collected data on reproductive state and hormone profiles over a 3-year span, and quantified helminth parasite burdens in 2955 fecal samples from 24 female baboons. On a host level, we found that baboons are sensitive to parasite infection during the costliest phases of the reproductive cycle: pregnant females harbored higher intensities of Protospirura eggs than cycling and lactating females; lactating and cycling females had a higher probability of Oesophagostomum infection than pregnant females; and cycling females exhibited lower Trichuris egg counts than pregnant and lactating females. Steroid hormones were associated with both immunoenhancing and immunosuppressive properties: females with high glucocorticoid concentrations exhibited high intensities of Trichuris eggs but were at low risk of Oesophagostomum infection; females with high estrogen and progestagen concentrations exhibited high helminth parasite richness; and females with high progestagen concentrations were at high risk of Oesophagostomum infection but exhibited low Protospirura egg counts. We observed an interaction between host reproductive state and progestagen concentrations in infection intensity of Protospirura: pregnant females exhibited higher intensities and non-pregnant females exhibited lower intensities of Protospirura eggs with increasing progestagen concentrations. At a population level, rainfall patterns were dominant drivers of parasite risk. Lastly, helminth parasites exhibited positive covariance, suggesting that infection probability increases if a host already harbors one or more parasite taxa. Together, our results provide a holistic perspective of factors that shape variation in parasite risk in a wild population of animals.

2.
Proc Biol Sci ; 287(1934): 20201013, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32900310

RESUMEN

Across group-living animals, linear dominance hierarchies lead to disparities in access to resources, health outcomes and reproductive performance. Studies of how dominance rank predicts these traits typically employ one of several dominance rank metrics without examining the assumptions each metric makes about its underlying competitive processes. Here, we compare the ability of two dominance rank metrics-simple ordinal rank and proportional or 'standardized' rank-to predict 20 traits in a wild baboon population in Amboseli, Kenya. We propose that simple ordinal rank best predicts traits when competition is density-dependent, whereas proportional rank best predicts traits when competition is density-independent. We found that for 75% of traits (15/20), one rank metric performed better than the other. Strikingly, all male traits were best predicted by simple ordinal rank, whereas female traits were evenly split between proportional and simple ordinal rank. Hence, male and female traits are shaped by different competitive processes: males are largely driven by density-dependent resource access (e.g. access to oestrous females), whereas females are shaped by both density-independent (e.g. distributed food resources) and density-dependent resource access. This method of comparing how different rank metrics predict traits can be used to distinguish between different competitive processes operating in animal societies.


Asunto(s)
Papio/fisiología , Conducta Social , Predominio Social , Animales , Femenino , Kenia , Masculino
3.
Am J Primatol ; 82(2): e23093, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31930746

RESUMEN

Ecoimmunological patterns and processes remain understudied in wild primates, in part because of the lack of noninvasive methods to measure immunity. Secretory immunoglobulin A (sIgA) is the most abundant antibody present at mammalian mucosal surfaces and provides an important first line of defense against pathogens. Recent studies show that sIgA can be measured noninvasively in feces and is a good marker of mucosal immunity. Here we validated a commercial ELISA kit to measure fecal IgA in baboons, tested the robustness of its results to variation in collection and storage conditions, and developed a cost-effective in-house ELISA for baboon fecal IgA. Using data from the custom ELISA, we assessed the relationship between fecal IgA concentrations and gastrointestinal parasite burden, and tested how sex, age, and reproductive effort predict fecal IgA in wild baboons. We find that IgA concentrations can be measured in baboon feces using an in-house ELISA and are highly correlated to the values obtained with a commercial kit. Fecal IgA concentrations are stable when extracts are stored for up to 22 months at -20°C. Fecal IgA concentrations were negatively correlated with parasite egg counts (Trichuris trichiura), but not parasite richness. Fecal IgA did not vary between the sexes, but for males, concentrations were higher in adults versus adolescents. Lactating females had significantly lower fecal IgA than pregnant females, but neither pregnant nor lactating female concentrations differed significantly from cycling females. Males who engaged in more mate-guarding exhibited similar IgA concentrations to those who engaged in little mate-guarding. These patterns may reflect the low energetic costs of mucosal immunity, or the complex dependence of IgA excretion on individual condition. Adding a noninvasive measure of mucosal immunity will promote a better understanding of how ecology modulates possible tradeoffs between the immune system and other energetically costly processes in the wild.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/veterinaria , Inmunidad Mucosa , Inmunoglobulina A/análisis , Papio anubis/inmunología , Papio cynocephalus/inmunología , Manejo de Especímenes/veterinaria , Factores de Edad , Animales , Animales Salvajes/inmunología , Animales de Zoológico/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Kenia , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/parasitología , North Carolina , Reproducción , Factores Sexuales , Manejo de Especímenes/métodos , Tricuriasis/inmunología , Tricuriasis/parasitología , Tricuriasis/veterinaria , Trichuris/fisiología
4.
J Anim Ecol ; 88(7): 1029-1043, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30972751

RESUMEN

Helminth parasites can have wide-ranging, detrimental effects on host reproduction and survival. These effects are best documented in humans and domestic animals, while only a few studies in wild mammals have identified both the forces that drive helminth infection risk and their costs to individual fitness. Working in a well-studied population of wild baboons (Papio cynocephalus) in the Amboseli ecosystem in Kenya, we pursued two goals, to (a) examine the costs of helminth infections in terms of female fertility and glucocorticoid hormone levels and (b) test how processes operating at multiple scales-from individual hosts to social groups and the population at large-work together to predict variation in female infection risk. To accomplish these goals, we measured helminth parasite burdens in 745 faecal samples collected over 5 years from 122 female baboons. We combine these data with detailed observations of host environments, social behaviours, hormone levels and interbirth intervals (IBIs). We found that helminths are costly to female fertility: females infected with more diverse parasite communities (i.e., higher parasite richness) exhibited longer IBIs than females infected by fewer parasite taxa. We also found that females exhibiting high Trichuris trichiura egg counts also had high glucocorticoid levels. Female infection risk was best predicted by factors at the host, social group and population level: females facing the highest risk were old, socially isolated, living in dry conditions and infected with other helminths. Our results provide an unusually holistic understanding of the factors that contribute to inter-individual differences in parasite infection, and they contribute to just a handful of studies linking helminths to host fitness in wild mammals.


Asunto(s)
Ecosistema , Helmintos , Animales , Femenino , Interacciones Huésped-Parásitos , Humanos , Kenia , Papio
5.
Sci Rep ; 8(1): 3629, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483573

RESUMEN

Social status is an important predictor of parasite risk in vertebrates. To date, general frameworks to explain status-related variation in parasitism have remained elusive. In this meta-analysis, we evaluated five hypotheses proposed to explain status-related variation in parasitism in male and female vertebrates by leveraging variation in hierarchy type, mating system, parasite transmission mode, and allostatic load to test associated predictions. Our meta-analyses span 66 analyses (26 studies) of male vertebrates (two orders and five classes), and 62 analyses (13 studies) of female vertebrates (four vertebrate orders). Contrary to the prevailing paradigm that low status is linked to poor health, we found that dominant animals typically faced higher parasite risk than subordinates. This pattern was especially well-supported in analyses of males versus females, in linear versus egalitarian hierarchies, in mating systems where dominance rank predicts mating effort, and for contact- and environmentally-transmitted parasites rather than vector-borne parasites. These findings supported the priority-of-access and tradeoffs hypotheses suggesting that variation in parasitism is driven by rank-associated differences in exposure to parasites and mating effort. Together, these results suggest that high parasite risk might sometimes be an unappreciated cost of high rank, and conversely, reduced parasite risk might be a benefit of social subordination.


Asunto(s)
Vertebrados , Animales , Femenino , Jerarquia Social , Masculino , Predominio Social
6.
Philos Trans R Soc Lond B Biol Sci ; 370(1669)2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25870395

RESUMEN

In male vertebrates, two conflicting paradigms--the energetic costs of high dominance rank and the chronic stress of low rank--have been proposed to explain patterns of immune function and parasitism. To date, neither paradigm has provided a complete explanation for status-related differences in male health. Here, we applied meta-analyses to test for correlations between male social status, immune responses and parasitism. We used an ecoimmunological framework, which proposes that males should re-allocate investment in different immune components depending on the costs of dominance or subordination. Spanning 297 analyses, from 77 studies on several vertebrate taxa, we found that most immune responses were similar between subordinate and dominant males, and neither dominant nor subordinate males consistently invested in predictable immune components. However, subordinate males displayed significantly lower delayed-type hypersensitivity and higher levels of some inflammatory cytokines than dominant males, while dominant males exhibited relatively lower immunoglobulin responses than subordinate males. Despite few differences in immunity, dominant males exhibited consistently higher parasitism than subordinate males, including protozoan blood parasites, ectoparasites and gastrointestinal helminths. We discuss our results in the context of the costs of dominance and subordination and advocate future work that measures both parasitism and immune responses in wild systems.


Asunto(s)
Enfermedades Parasitarias en Animales/inmunología , Enfermedades Parasitarias en Animales/fisiopatología , Predominio Social , Animales , Conducta Animal , Humanos , Masculino , Modelos Biológicos , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...