Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38558990

RESUMEN

Interactions of light-sensitive drugs and materials with Cerenkov radiation-emitting radiopharmaceuticals generate cytotoxic reactive oxygen species (ROS) to inhibit localized and disseminated cancer progression, but the cell death mechanisms underlying this radionuclide stimulated dynamic therapy (RaST) remain elusive. Using ROS-regenerative nanophotosensitizers coated with a tumor-targeting transferrin-titanocene complex (TiO2-TC-Tf) and radiolabeled 2-fluorodeoxyglucose (18FDG), we found that adherent dying cells maintained metabolic activity with increased membrane permeabilization. Mechanistic assessment of these cells revealed that RaST activated the expression of RIPK-1 and RIPK-3, which mediate necroptosis cell death. Subsequent recruitment of the nuclear factors kappa B and the executioner mixed lineage kinase domain-like pseudo kinase (MLKL) triggered plasma membrane permeabilization and pore formation, respectively, followed by the release of cytokines and immunogenic damage-associated molecular patterns (DAMPs). In immune-deficient breast cancer models with adequate stroma and growth factors that recapitulate the human tumor microenvironment, RaST failed to inhibit tumor progression and the ensuing lung metastasis. A similar aggressive tumor model in immunocompetent mice responded to RaST, achieving a remarkable partial response (PR) and complete response (CR) with no evidence of lung metastasis, suggesting active immune system engagement. RaST recruited antitumor CD11b+, CD11c+, and CD8b+ effector immune cells after initiating dual immunogenic apoptosis and necroptosis cell death pathways in responding tumors in vivo. Over time, cancer cells upregulated the expression of negative immune regulating cytokine (TGF-ß) and soluble immune checkpoints (sICP) to challenge RaST effect in the CR mice. Using a signal-amplifying cancer-imaging agent, LS301, we identified latent minimal residual disseminated tumors in the lymph nodes (LNs) of the CR group. Despite increased protumor immunogens in the CR mice, RaST prevented cancer relapse and metastasis through dynamic redistribution of ROS-regenerative TiO2 from bones at the early treatment stage to the spleen and LNs, maintaining active immunity against cancer progression and migration. This study reveals the immune-mechanistic underpinnings of RaST-mediated antitumor immune response and highlights immunogenic reprogramming of tumors in response to RaST. Overcoming apoptosis resistance through complementary necroptosis activation paves the way for strategic drug combinations to improve cancer treatment.

2.
J Biomed Opt ; 25(2): 1-13, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32112540

RESUMEN

SIGNIFICANCE: The blood-brain barrier (BBB) is a major obstacle to detecting and treating brain tumors. Overcoming this challenge will facilitate the early and accurate detection of brain lesions and guide surgical resection of tumors. AIM: We generated an orthotopic brain tumor model that simulates the pathophysiology of gliomas at early stages; determine the BBB integrity and breakdown over the time course of tumor progression using generic and cancer-targeted near-infrared (NIR) fluorescent molecular probes. APPROACH: We developed an intracranial tumor xenograft model that rapidly reestablished BBB integrity and monitored tumor progression by bioluminescence imaging. Sham control mice were injected with phosphate-buffered saline only. Fluorescence molecular tomography (FMT) was used to quantify the uptake of tumor-targeted and passive NIR fluorescent imaging agents in orthotopic glioma (U87-GL-GFP PDE7B H217Q cells) tumor model. Cancer-induced and transient (with focused ultrasound, FUS) disruption of BBB integrity was monitored with NIR fluorescent dyes. RESULTS: Stereotactic injection of 50,000 cells into mouse brain allowed rapid reestablishment of BBB integrity within a week, as determined by the inability of both tumor-targeted and generic NIR imaging agents to extravasate into the brain. Tumor-induced BBB disruption was observed 7 weeks after tumor implantation. FUS achieved a similar effect at any time point after reestablishing BBB integrity. While tumor uptake and retention of the passive NIR dye, indocyanine green, was negligible, both actively tumor-targeting agents exhibited selective accumulation in the tumor region. The tumor-targeting molecular probe that clears rapidly from nontumor brain tissue exhibits higher contrast than the analogous vascular-targeting agent and helps delineate tumors from sham control. CONCLUSIONS: We highlight the utility of FMT imaging for longitudinal assessment of brain tumors and the interplay between the stages of BBB disruption and molecular probe retention in tumors, with potential application to other neurological diseases.


Asunto(s)
Barrera Hematoencefálica/fisiología , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Microscopía Fluorescente/métodos , Tomografía Óptica/métodos , Animales , Neoplasias Encefálicas/patología , Colorantes/administración & dosificación , Medios de Contraste , Modelos Animales de Enfermedad , Femenino , Glioma/patología , Proteínas Fluorescentes Verdes/administración & dosificación , Procesamiento de Imagen Asistido por Computador/métodos , Verde de Indocianina/administración & dosificación , Sustancias Luminiscentes/administración & dosificación , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Trasplante Heterólogo
3.
Nat Biomed Eng ; 4(3): 298-313, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32165732

RESUMEN

The heterogeneity and continuous genetic adaptation of tumours complicate their detection and treatment via the targeting of genetic mutations. However, hallmarks of cancer such as aberrant protein phosphorylation and calcium-mediated cell signalling provide broadly conserved molecular targets. Here, we show that, for a range of solid tumours, a cyclic octapeptide labelled with a near-infrared dye selectively binds to phosphorylated Annexin A2 (pANXA2), with high affinity at high levels of calcium. Because of cancer-cell-induced pANXA2 expression in tumour-associated stromal cells, the octapeptide preferentially binds to the invasive edges of tumours and then traffics within macrophages to the tumour's necrotic core. As proof-of-concept applications, we used the octapeptide to detect tumour xenografts and metastatic lesions, and to perform fluorescence-guided surgical tumour resection, in mice. Our findings suggest that high levels of pANXA2 in association with elevated calcium are present in the microenvironment of most solid cancers. The octapeptide might be broadly useful for selective tumour imaging and for delivering drugs to the edges and to the core of solid tumours.


Asunto(s)
Anexina A2/metabolismo , Calcio/metabolismo , Diagnóstico por Imagen/métodos , Neoplasias/diagnóstico por imagen , Células A549 , Animales , Anexina A2/genética , Apoptosis , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Macrófagos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Fosforilación , Proteómica , Células del Estroma , Trasplante Heterólogo
4.
Mol Neurodegener ; 14(1): 11, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30813965

RESUMEN

BACKGROUND: Alzheimer's disease is characterized by two main neuropathological hallmarks: extracellular plaques of amyloid-ß (Aß) protein and intracellular aggregates of tau protein. Although tau is normally a soluble monomer that bind microtubules, in disease it forms insoluble, hyperphosphorylated aggregates in the cell body. Aside from its role in AD, tau is also involved in several other neurodegenerative disorders collectively called tauopathies, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), some forms of frontotemporal dementia, and argyrophilic grain disease (AGD). The prion hypothesis suggests that after an initial trigger event, misfolded forms of tau are released into the extracellular space, where they spread through different brain regions, enter cells, and seeding previously normal forms. Thus understanding mechanisms regulating the clearance of extracellular tau from the CNS is important. The discovery of a true lymphatic system in the dura and its potential role in mediating Aß pathology prompted us to investigate its role in regulating extracellular tau clearance. METHODS: To study clearance of extracellular tau from the brain, we conjugated monomeric human tau with a near-infrared dye cypate, and injected this labeled tau in the parenchyma of both wild-type and K14-VEGFR3-Ig transgenic mice, which lack a functional CNS lymphatic system. Following injection we performed longitudinal imaging using fluorescence molecular tomography (FMT) and quantified fluorescence to calculate clearance of tau from the brain. To complement this, we also measured tau clearance to the periphery by measuring plasma tau in both groups of mice. RESULTS: Our results show that a significantly higher amount of tau is retained in the brains of K14-VEGFR3-Ig vs. wild type mice at 48 and 72 h post-injection and its subsequent clearance to the periphery is delayed. We found that clearance of reference tracer human serum albumin (HSA) was also significantly delayed in the K14-VEGFR3-Ig mice. CONCLUSIONS: The dural lymphatic system appears to play an important role in clearance of extracellular tau, since tau clearance is impaired in the absence of functional lymphatics. Based on our baseline characterization of extracellular tau clearance, future studies are warranted to look at the interaction between tau pathology and efficiency of lymphatic function.


Asunto(s)
Duramadre , Sistema Glinfático , Vasos Linfáticos , Proteínas tau/metabolismo , Animales , Humanos , Ratones , Ratones Transgénicos
5.
Nanomedicine (Lond) ; 14(2): 169-182, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30730790

RESUMEN

AIM: CaCO3 nanoparticles (nano-CaCO3) can neutralize the acidic pHe of solid tumors, but the lack of intrinsic imaging signal precludes noninvasive monitoring of pH-perturbation in tumor microenvironment. We aim to develop a theranostic version of nano-CaCO3 to noninvasively monitor pH modulation and subsequent tumor response. MATERIALS & METHODS: We synthesized ferromagnetic core coated with CaCO3 (magnetite CaCO3). Magnetic resonance imaging (MRI) was used to determine the biodistribution and pH modulation using murine fibrosarcoma and breast cancer models. RESULTS: Magnetite CaCO3-MRI imaging showed that nano-CaCO3 rapidly raised tumor pHe, followed by excessive tumor-associated acid production after its clearance. Continuous nano-CaCO3 infusion could inhibit metastasis. CONCLUSION: Nano-CaCO3 exposure induces tumor metabolic reprogramming that could account for the failure of previous intermittent pH-modulation strategies to achieve sustainable therapeutic effect.


Asunto(s)
Carbonato de Calcio , Nanopartículas/química , Metástasis de la Neoplasia/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carbonato de Calcio/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Humanos , Masculino , Ratones , Tamaño de la Partícula , Nanomedicina Teranóstica
6.
Nat Commun ; 9(1): 275, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348537

RESUMEN

Most cancer patients succumb to disseminated disease because conventional systemic therapies lack spatiotemporal control of their toxic effects in vivo, particularly in a complicated milieu such as bone marrow where progenitor stem cells reside. Here, we demonstrate the treatment of disseminated cancer by photoactivatable drugs using radiopharmaceuticals. An orthogonal-targeting strategy and a contact-facilitated nanomicelle technology enabled highly selective delivery and co-localization of titanocene and radiolabelled fluorodeoxyglucose in disseminated multiple myeloma cells. Selective ablation of the cancer cells was achieved without significant off-target toxicity to the resident stem cells. Genomic, proteomic and multimodal imaging analyses revealed that the downregulation of CD49d, one of the dimeric protein targets of the nanomicelles, caused therapy resistance in small clusters of cancer cells. Similar treatment of a highly metastatic breast cancer model using human serum albumin-titanocene formulation significantly inhibited cancer growth. This strategy expands the use of phototherapy for treating previously inaccessible metastatic disease.


Asunto(s)
Neoplasias Mamarias Experimentales/terapia , Mieloma Múltiple/terapia , Compuestos Organometálicos/administración & dosificación , Fotoquimioterapia , Radiofármacos/administración & dosificación , Animales , Línea Celular , Resistencia a Antineoplásicos , Femenino , Integrina alfa4beta1 , Ratones Endogámicos C57BL , Ratones SCID , Micelas , Terapia Molecular Dirigida , Nanopartículas , Ratas , Albúmina Sérica Humana , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Biomed Opt ; 22(6): 66007, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28613348

RESUMEN

Similarity of skin cancer with many benign skin pathologies requires reliable methods to detect and differentiate the different types of these lesions. Previous studies have explored the use of disparate optical techniques to identify and estimate the invasive nature of melanoma and basal cell carcinoma with varying outcomes. Here, we used a concerted approach that provides complementary information for rapid screening and characterization of tumors, focusing on squamous cell carcinoma (SCC) of the skin. Assessment of in vivo autofluorescence lifetime (FLT) imaging of endogenous fluorophores that are excitable at longer wavelengths (480 nm) than conventional NADH and FAD revealed a decrease in the short FLT component for SCC compared to normal skin, with mean values of 0.57 ± 0.026 ?? ns and 0.61 ± 0.021 ?? ns , respectively ( p = 0.004 ). Subsequent systemic administration of a near-infrared fluorescent molecular probe in SCC bearing mice, followed by the implementation of image processing methods on data acquired from two-dimensional and three-dimensional fluorescence molecular imaging, allowed us to estimate the tumor volume and depth, as well as quantify the fluorescent probe in the tumor. The result suggests the involvement of lipofuscin-like lipopigments and riboflavin in SCC metabolism and serves as a model for staging SCC.


Asunto(s)
Colorantes Fluorescentes , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Neoplasias Cutáneas/diagnóstico por imagen , Animales , Ratones
9.
Ann Surg Oncol ; 24(7): 1897-1903, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28213790

RESUMEN

BACKGROUND: The inability to visualize the patient and surgical site directly, limits the use of current near infrared fluorescence-guided surgery systems for real-time sentinel lymph node biopsy and tumor margin assessment. METHODS: We evaluated an optical see-through goggle augmented imaging and navigation system (GAINS) for near-infrared, fluorescence-guided surgery. Tumor-bearing mice injected with a near infrared cancer-targeting agent underwent fluorescence-guided, tumor resection. Female Yorkshire pigs received hind leg intradermal indocyanine green injection and underwent fluorescence-guided, popliteal lymph node resection. Four breast cancer patients received 99mTc-sulfur colloid and indocyanine green retroareolarly before undergoing sentinel lymph node biopsy using radioactive tracking and fluorescence imaging. Three other breast cancer patients received indocyanine green retroareolarly before undergoing standard-of-care partial mastectomy, followed by fluorescence imaging of resected tumor and tumor cavity for margin assessment. RESULTS: Using near-infrared fluorescence from the dyes, the optical see-through GAINS accurately identified all mouse tumors, pig lymphatics, and four pig popliteal lymph nodes with high signal-to-background ratio. In 4 human breast cancer patients, 11 sentinel lymph nodes were identified with a detection sensitivity of 86.67 ± 0.27% for radioactive tracking and 100% for GAINS. Tumor margin status was accurately predicted by GAINS in all three patients, including clear margins in patients 1 and 2 and positive margins in patient 3 as confirmed by paraffin-embedded section histopathology. CONCLUSIONS: The optical see-through GAINS prototype enhances near infrared fluorescence-guided surgery for sentinel lymph node biopsy and tumor margin assessment in breast cancer patients without disrupting the surgical workflow in the operating room.


Asunto(s)
Neoplasias de la Mama/cirugía , Dispositivos de Protección de los Ojos , Fluorescencia , Ganglios Linfáticos/cirugía , Cirugía Asistida por Computador/métodos , Oncología Quirúrgica , Adulto , Anciano , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Verde de Indocianina , Escisión del Ganglio Linfático , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Biopsia del Ganglio Linfático Centinela , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...