Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1394557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170697

RESUMEN

Introduction: Isoproterenol (ISO) is regarded as an adrenergic non-selective ß agonist. It regulates myocardial contractility and may cause damage to cardiac tissues. Alchemilla vulgaris (AV) is an herbal plant that has garnered considerable attention due to its anti-inflammatory and antioxidant bioactive components. The present investigation assessed the cardioprotective potential of AV towards ISO-induced myocardial damage. Methods: Four groups of mice were utilized: control that received saline, an ISO group (85 mg/kg, S.C.), ISO + AV100, and ISO + AV200 groups (mice received 100 or 200 mg/kg AV orally along with ISO). Results and discussion: ISO induced notable cardiac damage demonstrated by clear histopathological disruption and alterations in biochemical parameters. Intriguingly, AV treatment mitigates ISO provoked oxidative stress elucidated by a substantial enhancement in superoxide dismutase (SOD) and catalase (CAT) activities and reduced glutathione (GSH) content, as well as a considerable reduction in malondialdehyde (MDA) concentrations. In addition, notable downregulation of inflammatory biomarkers (IL-1ß, TNF-α, and RAGE) and the NF-κB/p65 pathway was observed in ISO-exposed animals following AV treatment. Furthermore, the pro-apoptotic marker Bax was downregulated together with autophagy markers Beclin1 and LC3 with in ISO-exposed animals when treated with AV. Pre-treatment with AV significantly alleviated ISO-induced cardiac damage in a dose related manner, possibly due to their antioxidant and anti-inflammatory properties. Interestingly, when AV was given at higher doses, a remarkable restoration of ISO-induced cardiac injury was revealed.

2.
Front Pharmacol ; 15: 1379908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211776

RESUMEN

The major contribution of myocardial damage to global mortalities raises debate regarding the exploration of new therapeutic strategies for its treatment. Therefore, our study investigated the counteracting effect of tiron against isoprenaline (ISO)-mediated cardiac infarction in mice. Tiron was administered to mice for 7 days prior to two consecutive injections of ISO on days 8 and 9 of the treatment protocol. Tiron significantly reduced the levels of CK-MB, LDH, and AST in serum samples of ISO-challenged mice. A considerable increase in the cardiac antioxidant response was observed in tiron-treated mice, as indicated by depletion of MDA and enhancement of antioxidant activities. Furthermore, tiron induced a marked decrease in NLRP3, ASC, and caspase-1 levels accompanied by weak immune reactions of IL-1ß, NF-κB, TLR4, and iNOS in the infarct cardiac tissues. Histopathological screening validated these variations observed in the cardiac specimens. Thus, tiron clearly mitigated the oxidative and inflammatory stress by repressing the NLRP3 inflammasome and the TLR4/NF-κB/iNOS signaling cascade.

3.
Drug Des Devel Ther ; 18: 2989-3004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050805

RESUMEN

Background: Nootkatone (NK), a bioactive sesquiterpene ketone, is a major ingredient in grapefruit that has distinguished biological activities. Melamine (MM), a food adulterant, was reported to induce toxic effects including renal disorders. Hence, this protocol was devoted to evaluate the renoprotective impact of NK toward MM-evoked renal damage. Methods: Rats were either exposed to MM (700 mg/kg) or a combination of MM and two doses of NK (5 and 10 mg/kg). Results: The results showed that NK therapy notably decreased the kidney functional parameters, along with KIM-1 and NGAL expressions of MM group. Furthermore, a decrease in MDA and NO levels as well as an elevation in SOD, CAT, GSH, and SOD and NRF2 mRNA expression in the NK group demonstrated NK's ability to enhance the renal antioxidant defense of the MM group. Significant suppression in renal inflammatory markers was achieved by NK via lessening of IL-1ß and TNF-α, besides downregulation of NF-κB and IL-1ß expressions. NK also downregulated vimentin, nestin, and desmin in the MM group. Additionally, in response to the MM exposure, NK hindered renal apoptosis by decreasing caspase-3 expression and restoring renal histopathological features. Conclusion: These outcomes suggest that NK can be considered as a prospective candidate to guard against MM exposure-mediated renal toxic effects.


Asunto(s)
Apoptosis , Estrés Oxidativo , Triazinas , Animales , Ratas , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Triazinas/farmacología , Masculino , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/metabolismo , Sesquiterpenos Policíclicos/farmacología , Relación Dosis-Respuesta a Droga , Antioxidantes/farmacología , Ratas Sprague-Dawley , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/prevención & control , Ratas Wistar , Relación Estructura-Actividad
4.
J Sci Food Agric ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993070

RESUMEN

BACKGROUND: Mercuric chloride (HgCl2) is poisonous to humans and animals and typically damages the nervous system and other organs. Mercuric chloride exposition disclosed to initiation of oxidative stress pathway can result in a defect in male fertility and testis tissue. Synthesized selenium nanoparticles (SeNPs) were characterized with a diameter range minimal than 100 nm, having the effective sets of the biological matter. The present study aimed to evaluate the effect of biosynthesized SeNPs, prepared by leek extract on Wistar rats' testicles and brain. METHODS: Thirty-five Wistar male rats (120-150 g) were randomly split into five groups (n = 7), orally ingested with leek aqueous extract loaded on SeNPs, and then the animals were administered with mercury II chloride (HgCl2) to induce testis injury and damage the nervous system. RESULTS: The used dose of mercuric chloride led to oxidative stress damage in the testis of the rats which was evidenced by a decrease in testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and proliferating cell nuclear antigen (PCNA) levels, and an increase in nuclear factor-kappa B (NF-κB) and caspase-3. Also, HgCl2 decreased the levels of dopamine (DA), serotonin (5-HT), norepinephrine (NE) and brain-derived neurotrophic factor (BDNF) in the brains of rats. In addition, A decrease was observed in the levels of antioxidant markers, B-cell lymphoma-2 (Bcl-2), as well as an increase in malondialdehyde (MDA), nitric oxide (NO), NF-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and Bax in both testes and brains. Pre-treatment with leek extract loaded on SeNPs significantly ameliorated testosterone, LH, FSH, PCNA and caspase-3 levels in the testis and DA, 5-HT, NE and BDNF in brains. Although the contents of MDA, NO, TNF-α, IL-1ß, NF-κB and Bax decreased significantly in both. glutathione, glutathione peroxidase, glutathione reductase, catalase, superoxide dismutase and Bcl-2 levels were significantly improved in both organs. CONCLUSION: Our findings suggest that treatment with aqueous leek extract loaded on SeNPs may offer promising prospects for the advancement of anti-inflammation activity against testis injury and also have a very key role in neurobehavioral alterations as a result of mercury toxicity. © 2024 Society of Chemical Industry.

5.
Front Pharmacol ; 15: 1384834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751780

RESUMEN

Introduction: Administration of high doses of acetaminophen (APAP) results in liver injury. Oxidative stress and iron overload play roles in the pathogenesis of APAP-induced hepatotoxicity. The present study assessed the potential hepatoprotective effects of phytic acid (PA), a natural antioxidant and iron chelator, on APAP-induced hepatotoxicity and the possible underlying mechanism through its effects on CYP2E1 gene expression, iron homeostasis, oxidative stress, and SIRT-1 expression levels. Methods: Twenty-four adult male albino mice were used in this study. Mice were divided into four groups (six mice in each group): control, APAP-treated, PA-treated and APAP + PA-treated groups. Liver function tests, serum and liver tissue iron load were evaluated in all the study groups. Hepatic tissue homogenates were used to detect oxidative stress markers, including malondialdehyde (MDA) and reduced glutathione (GSH). Histological hepatic evaluation and immunohistochemistry of SIRT-1 were performed. Quantitative real-time PCR was used for the assessment of CYP2E1 and SIRT-1 gene expressions. APAP-induced biochemical and structural hepatic changes were reported. Results: PA administration showed beneficial effects on APAP-induced hepatotoxicity through improvements in liver functions, decreased CYP2E1 gene expression, decreased serum and liver iron load, decreased MDA, increased GSH, increased SIRT-1 expression level and improvement in hepatic architecture. Conclusion: Conclusively, PA can be considered a potential compound that can attenuate acetaminophen-induced hepatotoxicity through its role as an iron chelator and antioxidant, as well as the up-regulation of SIRT-1 and down-regulation of CYP2E1.

6.
Heliyon ; 10(7): e28436, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560252

RESUMEN

Background: Aquaporins (AQPs) are transmembrane channel proteins. Aquaporin 1 (AQP1), Aquaporin 3 (AQP3), and Aquaporin 7 (AQP7) are expressed in the jejunum. The purpose of this study was to ascertain how a high-fat high-fructose diet (HFFD) and intermittent fasting (IF) affect AQP1, AQP3, and AQP7 expression in the rat jejunum. Methods: Sixteen adult male rats were divided into control rats (n = 4) fed on a basal diet and water ad libitum for 12 weeks; IF control rats (n = 4) followed the IF protocol, HFFD-fed rats (n = 8) fed HFFD for eight weeks, and rats were randomized into two groups: HFFD only or HFFD and IF protocol from the beginning of the 9th week until the end of the experiment. The lipid profile values were assessed after 12 weeks. Jejunal oxidative markers (malondialdehyde and reduced glutathione) and AQP1, AQP3, and AQP7 mRNA expression were measured. Jejunal sections were used for morphometric analysis of villus length and crypt depth. Immunohistochemical evaluation of AQP1, AQP3, and AQP7 expression was also performed. Results: IF ameliorates HFFD-induced lipid profile, oxidative stress, and jejunal morphometric changes. The results of both mRNA expression using PCR and immunohistochemistry showed a significant increase in AQP1, AQP3, and AQP7 expression in HFFD, whereas IF caused a decline in this expression. Conclusion: These findings suggest that IF can reduce inflammation, and oxidative stress and restore jejunal morphology caused by HFFD.

7.
Tissue Cell ; 88: 102327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493756

RESUMEN

BACKGROUND: Ulcerative colitis is a risk factor for colorectal carcinoma. Different mechanisms are related to colitis like apoptosis and hyperproliferation. Moringa oleifera leaves extract (MO) provides a promising option to overcome the risk. PURPOSE: To examine the colonic changes in a rat model of colitis induced by sodium nitrate (SN) and study the effects of MO. STUDY DESIGN: Eight adult male rats were allocated in each of the three group; control (distilled water), SN (100 mg/kg/day, orally via gastric gavage), and SN + MO (100 mg/kg/day, orally via gastric gavage). METHODS: Body weight was measured after the end of the experiment. Colonic homogenates were tested for levels of oxidative stress indicators. Immunohistochemistry for P53, PCNA and Ki-67 was performed. Fresh colon specimens were used for quantitative real-time PCR for assessment of P53, PCNA and Ki-67 gene expression. RESULTS: SN group revealed a significant decreased weight (p = 0.002). MDA and NO levels were higher with SN administration than with MO co-administration (p= 0.04, 0.01 respectively). GSH level was reduced in SN group (p = 0.02) and significantly increased with MO intake (p = 0.04). SN-induced colonic destructive changes were reversed with MO. P53, PCNA and Ki-67 levels of gene expression were reduced in SN + MO group than SN group (P = 0.007, 0.02, 0.001 respectively). CONCLUSION: MO protected the colonic mucosa against SN-induced changes regulating apoptosis, and cell proliferation.


Asunto(s)
Antígeno Ki-67 , Moringa oleifera , Nitratos , Extractos Vegetales , Hojas de la Planta , Antígeno Nuclear de Célula en Proliferación , Proteína p53 Supresora de Tumor , Animales , Moringa oleifera/química , Proteína p53 Supresora de Tumor/metabolismo , Antígeno Ki-67/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Extractos Vegetales/farmacología , Masculino , Hojas de la Planta/química , Ratas , Nitratos/metabolismo , Biomarcadores/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Estrés Oxidativo/efectos de los fármacos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38175392

RESUMEN

The objective of this study was to detect the effects of acute aflatoxin B1 (AFB1) exposure in Nile tilapia (Oreochromis niloticus) and the effectiveness of Saccharomyces cerevisiae and silicate in reducing these effects. Two hundred and forty Nile tilapia fingerlings (16 ± 0.5 g) were randomly assigned to four experimental groups, each with 60 fish and three replicates. Control basal diet (Diet 1) and three test diets were formulated, where Diet 2 was supplemented with 200 ppb AFB1. Diets 3 and 4 were intoxicated with AFB1 (200 ppb) and supplemented with 0.5% S. cerevisiae or 0.5%, respectively. After 60 days, Diet 1 had considerably greater growth characteristics than the other groups (p < 0.05). Diet 2 revealed a reduced (p < 0.05) survival rate after 1 month of exposure. In addition, Diet 1 showed higher (p < 0.05) total protein and albumin levels than Diets 3 and 4. AFB1 residues were detected in the liver in fish-fed Diet 2, Diet 4, and Diet 3. Alanine aminotransferase, aspartate aminotransferase, creatinine, and urea levels increased (p < 0.05) in fish-fed Diet 2. The glutathione peroxidase, lysozyme, and catalase activity were decreased (p < 0.05) in the fish-fed Diet 2. The malondialdehyde level was significantly higher in fish given Diet 2 (p < 0.05) than in fish-fed Diets 3 and 4. Histopathological investigation of fish-fed Diet 2 revealed impaired liver and spleen; however, both treatments (Diets 3 and 4) successfully lowered inflammation and preserved liver and spleen integrities. In conclusion, AFB1 impaired growth performance and posed a severe health risk to Nile tilapia. Furthermore, S. cerevisiae alleviated the contamination of AFB1 effects more efficiently than silicate employed for toxin adsorption.

9.
Anticancer Agents Med Chem ; 24(6): 443-453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38204261

RESUMEN

BACKGROUND: Doxorubicin (DOX) is an antitumor anthracycline used to treat a variety of malignancies; however, its clinical use is associated with noticeable hepatotoxicity. Therefore, the current study was designed to delineate if biosynthesized SeNPs with turmeric extract (Tur-SeNPs) could alleviate DOX-induced hepatic adverse effects. METHODS: Mice were orally post-treated with Tur extract, Tur-SeNPs, or N-acetyl cysteine after the intraperitoneal injection of DOX. RESULTS: Our findings have unveiled a remarkable liver attenuating effect in DOX-injected mice post-treated with Tur-SeNPs. High serum levels of ALT, AST, ALP, and total bilirubin induced by DOX were significantly decreased by Tur-SeNPs therapy. Furthermore, Tur-SeNPs counteracted DOX-caused hepatic oxidative stress, indicated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and mRNA expression levels of Nrf-2. Noteworthily, decreased hepatic IL-1ß, TNF-α, and NF-κB p65 levels in addition to downregulated iNOS gene expression in Tur-SeNPs-treated mice have indicated their potent antiinflammatory impact. Post-treatment with Tur-SeNPs also mitigated the hepatic apoptosis evoked by DOX injection. A liver histological examination confirmed the biochemical and molecular findings. CONCLUSIONS: In brief, the outcomes have demonstrated Tur loaded with nanoselenium to successfully mitigate the liver damage induced by DOX via blocking oxidative stress, and inflammatory and apoptotic signaling.


Asunto(s)
Apoptosis , Citocinas , Doxorrubicina , Nanopartículas , Estrés Oxidativo , Extractos Vegetales , Selenio , Animales , Doxorrubicina/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratones , Selenio/química , Selenio/farmacología , Apoptosis/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Citocinas/metabolismo , Nanopartículas/química , Masculino , Curcuma/química , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Antibióticos Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos
10.
Molecules ; 28(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067602

RESUMEN

Globally, prostate cancer is among the most threatening and leading causes of death in men. This study, therefore, aimed to search for an ideal antitumor strategy with high efficacy, low drug resistance, and no or few adverse effects. Resistomycin is a natural antibiotic derived from marine actinomycetes, and it possesses various biological activities. Prostate cancer cells (PC3) were treated with resistomycin (IC12.5: 0.65 or IC25: 1.3 µg/mL) or 5-fluorouracil (5-FU; IC25: 7 µg/mL) for 24 h. MTT assay and flow cytometry were utilized to assess cell viability and apoptosis. Oxidative stress, apoptotic-related markers, and cell cycle were also assessed. The results revealed that the IC50 of resistomycin and 5-FU on PC3 cells were 2.63 µg/mL and 14.44 µg/mL, respectively. Furthermore, treated cells with the high dose of resistomycin showed an increased number of apoptotic cells compared to those treated with the lower dose. Remarkable induction of reactive oxygen species generation and lactate dehydrogenase (LDH) leakage with high malondialdehyde (MDA), carbonyl protein (CP), and 8-hydroxyguanosine (8-OHdG) contents were observed in resistomycin-treated cells. In addition, marked declines in glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in PC3 cells subjected to resistomycin therapy were observed. Resistomycin triggered observable cell apoptosis by increasing Bax, caspase-3, and cytosolic cytochrome c levels and decreasing Bcl-2 levels. In addition, notable downregulation of proliferating cell nuclear antigen (PCNA) and cyclin D1 was observed in resistomycin-treated cancerous cells. According to this evaluation, the antitumor potential of resistomycin, in a concentration-dependent manner, in prostate cancer cells was achieved by triggering oxidative stress, mitochondrial apoptosis, and cell cycle arrest in cancer cells. In conclusion, our investigation suggests that resistomycin can be considered a starting point for developing new chemotherapeutic agents for human prostate cancer.


Asunto(s)
Apoptosis , Neoplasias de la Próstata , Masculino , Humanos , Estrés Oxidativo , Puntos de Control del Ciclo Celular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Fluorouracilo/farmacología , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular
11.
Artículo en Inglés | MEDLINE | ID: mdl-38112993

RESUMEN

Aging represents a complex biological process associated with decline in skeletal muscle functions. Aging impairs satellite cells that serve as muscle progenitor cells. Probiotic supplementation may have many beneficial effects via various mechanisms. We examined the possible effects of probiotics in stimulating the proliferation of myogenic stellate cells in aging rats. Twenty-four male albino Sprague-Dawley rats were classified equally into four groups: adult control, old control, adult + probiotics, and old + probiotics. Probiotics (Lactobacillus LB) were administered gavage at a dose of 1 ml (1 × 109 CFU/ml/day) for 4 weeks. A significant increase in the relative gastrocnemius weight ratio and improvement of contractile parameters was detected in the old + probiotics group (0.6 ± 0.01) compared to the old control group (0.47 ± 0.01; P < 0.001). Probiotics significantly upregulated the activities of GSH, while NO and MDA were markedly decreased compared to control groups (P ≤ 0.001). Also, probiotics increased the mRNA and protein expressions of myogenin and CD34 (P < 0.05) as determined by real-time PCR and immunohistochemistry. Moreover, the old + probiotics group showed apparent restoration of the connective tissue spaces, reflecting the all-beneficial effects of probiotics. Our findings indicated that probiotics attenuated myopathic changes in aging rats probably through activation of the myogenic stellate cells. Probiotics improved the muscle weight, function, antioxidant activity, and myogenic transcription factors of the skeletal muscle.

12.
Environ Sci Pollut Res Int ; 30(56): 119016-119033, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919499

RESUMEN

Acute kidney injury (AKI) is a life-threatening complication that accompanies rhabdomyolysis. Daidzein is a dietary isoflavone that has various biological activities. This study examined the therapeutic potential of daidzein and the underlying mechanisms against AKI induced by glycerol in male rats. Animals were injected once with glycerol (50%, 10 ml/kg, intramuscular) for induction of AKI and pre-treated orally with daidzein (25, 50, and 100 mg/kg) for 2 weeks. Biochemical, histopathological, immunohistopathological, and molecular parameters were assessed to evaluate the effect of daidzein. The results revealed that the model group displayed remarkable functional, molecular, and structural changes in the kidney. However, pre-administration of daidzein markedly decreased the kidney relative weight as well as the levels of urea, creatinine, K, P, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and cystatin C. Further, daidzein lessened the rhabdomyolysis-related markers [lactate dehydrogenase (LDH) and creatine kinase (CK)]. Notably, the enhancement of the antioxidant biomarkers [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and reduced glutathione (GSH) is accompanied by a decrease in malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, upregulated gene expression levels of nuclear factor erythroid 2-related factor 2 (Nfe212) and hemeoxygenase-1 (Hmox1) were exerted by daidzein administration. Rats who received daidzein displayed markedly lower interleukin-1ß (IL-1ß), tumor nuclear factor-α (TNF-α), myleoperoxidase (MPO), and nuclear factor kappa B (NF-κB) levels together with higher interleukin-10 (IL-10) related to the model group. Remarkably, significant declines were noticed in the pro-apoptotic (Bax and caspase-3) and rises in antiapoptotic (Bcl-2) levels in the group that received daidzein. The renal histological screening validated the aforementioned biochemical and molecular alterations. Our findings support daidzein as a potential therapeutic approach against AKI-induced renal injury via suppression of muscle degradation, oxidative damage, cytokine release, and apoptosis.


Asunto(s)
Lesión Renal Aguda , Isoflavonas , Rabdomiólisis , Ratas , Masculino , Animales , Glicerol/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Riñón , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Estrés Oxidativo , Isoflavonas/farmacología , Rabdomiólisis/inducido químicamente , Rabdomiólisis/complicaciones , Rabdomiólisis/patología
13.
BMC Vet Res ; 19(1): 230, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925435

RESUMEN

The reproductive activity of the male dromedary camel (Camelus dromedarius) as a seasonal breeder is affected by various seasonal changes that reflect on the reproductive performance. In the current study, we explored a differential cellular localization of lectins in eight dromedary camel testes utilizing lectin histochemistry (LHC). The glycoconjugates' localizations were detected within the testicular tissue utilizing 13 biotin-labeled lectins (PNA, ConA, LCA, RCA120, GS IB4, WGA, BPL, DBA, ECA, PHA-E4, UEA-1, PTL-II, and SBA) distributed into six sets. The cellular structures revealed diverse lectins distribution that may reflect various glycoproteins' structures and their compositional modifications during spermatogenesis. Some of the investigated lectins were restricted to acrosomes of spermatids that will help study different stages during the spermatogenic cycle of dromedary camel, particularly PNA, and ECA. The statistical analysis showed a marked positive correlation between the response intensity of various lectins and the breeding season (P < 0.05). We can conclude that lectins have a fundamental role during camel spermatogenesis and are associated with the reproductive activity of dromedary camel.


Asunto(s)
Camelus , Testículo , Masculino , Animales , Camelus/fisiología , Lectinas , Estaciones del Año , Glicoconjugados
14.
Drug Des Devel Ther ; 17: 2985-3021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37789970

RESUMEN

Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Materiales Biocompatibles/farmacología , Sistemas de Liberación de Medicamentos , Polímeros
15.
Biosci Rep ; 43(11)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902021

RESUMEN

Cisplatin (CDDP) is a commonly prescribed chemotherapeutic agent; however, its associated nephrotoxicity limits its clinical efficacy and sometimes requires discontinuation of its use. The existing study was designed to explore the reno-therapeutic efficacy of turmeric (Tur) alone or conjugated with selenium nanoparticles (Tur-SeNPs) against CDDP-mediated renal impairment in mice and the mechanisms underlying this effect. Mice were orally treated with Tur extract (200 mg/kg) or Tur-SeNPs (0.5 mg/kg) for 7 days after administration of a single dose of CDDP (5 mg/kg, i.p.). N-acetyl cysteine NAC (100 mg/kg) was used as a standard antioxidant compound. The results revealed that Tur-SeNPs counteracted CDDP-mediated serious renal effects in treated mice. Compared with the controls, Tur or Tur-SeNPs therapy remarkably decreased the kidney index along with the serum levels of urea, creatinine, Kim-1, and NGAL of the CDDP-injected mice. Furthermore, Tur-SeNPs ameliorated the renal oxidant status of CDDP group demonstrated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and gene expression levels of HO-1. Noteworthy, lessening of renal inflammation was exerted by Tur-SeNPs via lessening of IL-6 and TNF-α besides down-regulation of NF-κB gene expression in mouse kidneys. Tur-SeNPs treatment also restored the renal histological features attained by CDDP challenge and hindered renal apoptosis through decreasing the Bax levels and increasing Bcl-2 levels. Altogether, these outcomes suggest that the administration of Tur conjugated with SeNPs is effective neoadjuvant chemotherapy to guard against the renal adverse effects that are associated with CDDP therapy.


Asunto(s)
Cisplatino , Selenio , Ratones , Animales , Cisplatino/efectos adversos , Selenio/farmacología , Selenio/metabolismo , Curcuma , Riñón/patología , Apoptosis , Estrés Oxidativo
16.
Heliyon ; 9(9): e19452, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662797

RESUMEN

Cell-based therapies have great promise in accelerating and improving burn wound healing. It is a growing need to scale their competence to meet the clinical demands. In this study, the bone marrow mesenchymal stem cells (BMSCs) and platelet-rich plasma (PRP) were tested on the repair of induced burn wounds in a murine model. After the induction of thermal injury, rats were injected with BMSCs and/or PRP in the burn area. After 4 weeks of post-burn, our findings revealed that local treatment of burnt skin with BMSCs and/or PRP offered substantial outcomes when compared with the untreated group. Injected burn with BMSCs and/or PRP enhanced the wound contraction rate and decreased the burn area and period of epithelization. Significant increases in VEGF together with declines in MMP-9 and TGF-ß1 were observed in burnt areas after being treated with BMSCs and/or PRP therapy that indicated improved angiogenesis, and re-epithelization. Furthermore, both MSCs and PRP modulated the burn's oxidative and inflammatory microenvironment as indicated by increases in SOD, CAT, and GSH besides declines in MDA, IL-6, TNF-α, NF-κB, NO, and iNOS. Notable increases in Bcl-2 levels and decreases in Cas-3 and Bax levels were recorded in burnt skin that received both agents concomitantly. Interestingly, the histopathological examination validates the healing power of BMSCs and/or PRP. Collectively, BMSCs and PRP have pioneered therapeutics candidates for clinical application in burn healing possibly via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms along with regulating angiogenesis and scar formation.

17.
Toxics ; 11(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37755794

RESUMEN

Melamine (ML) is a common environmental contaminant, commonly used in food fraud, representing a serious health hazard and jeopardizing human and animal health. Recently, nootkatone (NK), a naturally occurring sesquiterpenoid, has garnered considerable attention due to its potential therapeutic advantages. We investigated the potential mechanisms underlying the protective effects of NK against ML-induced liver injury in rats. Five groups were utilized: control, ML, NK10, ML-NK5, and ML-NK10. ML induced substantial hepatotoxicity, including considerable alterations in biochemical parameters and histology. The oxidative distress triggered by ML increased the generation of malondialdehyde (MDA) and nitric oxide (NO) and decreased levels of reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities. In addition, decreased expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased nuclear factor kappa beta (NF-κB) expression levels were observed in hepatocytes, which indicated the occurrence of inflammatory changes following ML exposure. These alterations were alleviated by NK supplementation in a dose-dependent manner. The data revealed that the favorable effects of NK were attributed, at least in part, to its antioxidant and anti-inflammatory properties. Moreover, our results were supported by molecular docking studies that revealed a good fit and interactions between NK and antioxidant enzymes. Thus, the current study demonstrated that NK is a potential new food additive for the prevention or treatment of ML-induced toxicity.

18.
Biomed Pharmacother ; 165: 115133, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454594

RESUMEN

Melamine (ML), a chemical substance of high nitrogen content, is used as a food adulterant. Former evidences implied that ML could induce a variety of toxic effects including neurotoxicity and cognitive impairment. Therefore, the aim of this study was to delineate the protective effect of the nootkatone (NK) against ML-induced neural adverse effects. Rats were orally pretreated with NK (5 and 10 mg/kg) prior to the oral administration of ML (700 mg/kg) for a period of 28 days. Our findings unveiled remarkable alleviating effect of NK on MK-induced neurobehavioral disturbance in open field test. Furthermore, NK lessened ML-caused increases in the acetylcholine esterase level in the brain tissue of exposed rats. NK also decreased the neural oxidative stress as represented by elevated levels of SOD, CAT, and GSH along with decreased MDA and NO levels. Upregulated mRNA expression levels of neural NRF-2 and HO-1 were noticed after NK administration. Remarkable anti-inflammatory impact was prominent by decreased neural IL-1ß, and TNF-α along with downregulated NF-κB and TLR-4 gene expression levels in NK-treated rats. Noteworthily, pre-treatment with NK decreased the immune reaction of RAGE and HMGB-1 induced by oral ML exposure. Brain histological examination validated the obtained biochemical and molecular results. To sum up, these outcomes reveal that NK successfully alleviated the neural damage induced by ML via blocking of oxidative stress, and inflammatory signaling pathways. Consequently, our study may suggest NK as a new effective therapeutic supplement for treatment of ML-mediated neurotoxicity in rats via inhibition of HMGB-1-RAGE/TLR-4/NF-κB.


Asunto(s)
FN-kappa B , Sesquiterpenos , Ratas , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Sesquiterpenos/farmacología , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacología
19.
Biomedicines ; 11(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37509594

RESUMEN

Several negative outcomes are associated with current anti-epileptic medications. Epigallocatechin gallate (EGCG) is a plant-derived compound called catechin and has many medicinal activities, such as anti-inflammatory and antioxidant activities. Biosynthesized selenium nanoparticles are also showing their neuroprotective effect. The anti-epileptic effect of EGCG, alone or with SeNPs, is still debated. Here, we aimed to investigate the potential anti-seizure effect of biosynthesized SeNPs using EGCG (EGCG-SeNPs) against epileptic seizures and hippocampal damage, which is enhanced by pentylenetetrazole (PTZ) injection in mice. Mice were grouped as follows: control; PTZ-exposed group (epileptic model); EGCG + PTZ-treated group; sodium selenite (Na2SeO3) + PTZ-treated group; EGCG-SeNPs + PTZ-treated group; and valproic acid (VPA) + PTZ-treated group. EGCG-SeNPs administration showed anti-epileptic activity by increasing the latency time and reducing the seizure duration following the PTZ injection. Additionally, EGCG-SeNPs counteracted the PTZ-induced changes in oxidants and antioxidants. Moreover, EGCG-SeNPs inhibited the inflammatory response by suppressing the release of pro-inflammatory cytokines and decreasing the immunoreactivity of the glial fibrillary acidic protein and mRNA expression of glutamate receptor subunit zeta-1 (NMDAR; Grin1), showing their inhibitory effect on epilepsy-associated inflammation. Moreover, EGCG-SeNPs reduced PTZ-induced neuronal apoptosis, as indicated by a reduction in the levels of pro-apoptotic proteins and an elevation of the anti-apoptotic protein. Moreover, EGCG-SeNPs administration significantly modulated the PTZ-induced changes in monoamine levels and acetylcholinesterase activity in the hippocampal tissue. The obtained findings suggest the anti-seizure activity of EGCG-SeNPs via their antioxidant, anti-inflammatory, and anti-apoptotic effects, along with their neuromodulatory effect.

20.
Biosci Rep ; 43(5)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37128859

RESUMEN

Copper nanoparticles are widely incorporated into many applications, including air and liquid filters, wood preservatives, batteries, thermal and electrical conductivity, inks and skin products. Their potential toxicity and environmental fate, however, are poorly studied in the freshwater bivalves. The aim of the present study was to evaluate the different effects of copper oxide nanoparticles and ionic copper on the digestive glands and gills of the mussel Chambardia rubens. Mussels were treated with 100 and 1000 µg Cu L-1 of copper oxide nanoparticles (CuONPs) or ionic copper (Cu2+) for 3, 7, and 14 days. The Cu accumulation and markers of oxidative stress in the digestive glands and gills were evaluated. The results show that the digestive gland collected higher levels of the two forms of copper than the gills. Exposure to CuONPs or Cu2+ induced significant elevations in superoxide dismutase, glutathione peroxidase and lipid peroxidation. Notably, a significant decrease was observed in the glutathione levels after exposure to both copper forms. CuONPs only induced a significant increase in glutathione reductase and glutathione S-transferase. The ionic copper only induced a significant decrease in catalase activities in the gill tissues. Overall, CuONPs and Cu2+ provoked oxidative stress, and further research is needed to clarify their genotoxic and neurotoxic effects on freshwater mussels and other biota.


Asunto(s)
Bivalvos , Nanopartículas , Animales , Cobre/toxicidad , Estrés Oxidativo , Peroxidación de Lípido , Óxidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA