Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Extremophiles ; 27(1): 2, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469177

RESUMEN

Halophilic archaea are the dominant type of microorganisms in hypersaline environments. The diversity of halophilic archaea in Zehrez-Chergui (Saharian chott) was analyzed and compared by both analysis of a library of PCR amplified 16S rRNA genes and by cultivation approach. This work, represents the first of its type in Algeria. A total cell count was estimated at 3.8 × 103 CFU/g. The morphological, biochemical, and physiological characterizations of 45 distinct strains, suggests that all of them might be members of the class Halobacteria. Among stains, 23 were characterized phylogenetically and are related to 6 genera of halophilic archaea.The dominance of the genus Halopiger, has not been reported yet in other hypersaline environments. The 100 clones obtained by the molecular approach, were sequenced, and analyzed. The ribosomal library of 61 OTUs showed that the archaeal diversity included uncultured haloarcheon, Halomicrobium, Natronomonas, Halomicroarcula, Halapricum, Haloarcula, Halosimplex, Haloterrigena, Halolamina, Halorubellus, Halorussus and Halonotius. The results of rarefaction analysis indicated that the analysis of an increasing number of clones would have revealed additional diversity. Surprisingly, no halophilic archaea were not shared between the two approaches. Combining both types of methods was considered the best approach to acquire better information on the characteristics of soil halophilic archaea.


Asunto(s)
Euryarchaeota , Halobacteriales , Archaea/genética , ARN Ribosómico 16S/genética , Argelia , Filogenia , Halobacteriales/genética , Euryarchaeota/genética , ADN de Archaea/genética
2.
Int J Biol Macromol ; 222(Pt A): 1326-1342, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36242508

RESUMEN

We recently described the production of a detergent-biocompatible crude protease from Streptomyces mutabilis strain TN-X30. Here, we describe the purification, characterization, and immobilization of the serine alkaline protease (named SPSM), as well as the cloning, sequencing, and over-expression of its corresponding gene (spSM). Pure enzyme was obtained after ammonium sulphate precipitation followed by heat-treatment and Sephacryl® S-200 column purification. The sequence of the first 26 NH2-terminal residues of SPSM showed a high sequence identity to subtilisin-like serine proteases produced by actinobacteria. The spSM gene was heterologously expressed in Escherichia coli BL21(DE3)pLysS and E. coli BL21-AI™ strains using pTrc99A (rSPSM) and Gateway™ pDEST™ 17 [(His)6-tagged SPSM] vectors, respectively. Results obtained indicated that the (His)6-tagged SPSM showed the highest stability. The SPSM was immobilized using encapsulation and adsorption-encapsulation approaches and three different carriers. Features of SPSM in soluble and immobilized forms were analyzed by Fourier transform infrared (FTIR) spectroscopy in attenuated total reflection (ATR) mode, X-ray diffraction (XRD), zeta potential measurements, and field emission scanning electron microscopy (FE-SEM). The white clay and kaolin used in this study are eco-friendly binders to alginate-SPSM and show great potential for application of the immobilized SPSM in various industries. Molecular modeling and docking of N-succinyl-l-Phe-l-Ala-l-Ala-l-Phe-p-nitroanilide in the active site of SPSM revealed the involvement of 21 amino acids in substrate binding.


Asunto(s)
Detergentes , Streptomyces , Simulación del Acoplamiento Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Estabilidad de Enzimas , Serina/genética , Proteínas Bacterianas/química , Serina Endopeptidasas/metabolismo , Subtilisinas/metabolismo , Clonación Molecular , Concentración de Iones de Hidrógeno
3.
Environ Sci Pollut Res Int ; 27(29): 37164-37172, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32705554

RESUMEN

In a previous study, a thermostable α-amylase-producing bacterium (designated HB23) was isolated from an Algerian hydrothermal spring. In the present study, the native strain was subjected to a statistical optimization aimed at enhancing the α-amylase production. To achieve this, thirteen factors have been studied, among which are cultural and nutritional parameters. Wheat bran, a by-product of the grain milling industry, was the factor that positively influenced α-amylase production. A modified L27 Taguchi design was used to screen these factors. Furthermore, a Box-Behnken matrix, supplemented by the use of response surface methodology (RSM), allowed for the identification of optimum levels of the following factors: a 1% inoculum size, 15 g/L soluble starch, 5 g/L wheat bran, and 1 g/L tryptone. Optimized conditions resulted in an amylolytic activity of 320 U/mL, which is a tenfold increase when compared with unoptimized production level. Phenotypical and molecular identification of strain HB23 revealed its close relationship to various Tepidimonas strains, specifically to Tepidimonas fonticaldi. The crude enzyme preparation turned out to be compatible with various laundry detergents and led to a substantial improvement in their washing performance. A comparison of the performance of the crude enzyme preparation with that of the commercial α-amylase (Termamyl® 300 L) highlights the potential of the HB23 enzyme as a bio-additive in detergent formulations.


Asunto(s)
Detergentes , alfa-Amilasas , Burkholderiales , Fibras de la Dieta , Almidón
4.
Environ Sci Pollut Res Int ; 27(13): 15842-15855, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32095964

RESUMEN

The efficiency of the proteolytic strain Anoxybacillus kamchatkensis M1V in the fermentation of speckled shrimp by-product was investigated for the recovery of a deproteinized bioactive hydrolysate. The biological activities of the resulting hydrolysate were also examined by applying several antioxidant and enzyme inhibitory assays. The strain M1V was found to produce high level of protease activity (2000 U/mL) when grown in media containing only shrimp powder at 25 g/L. The crude protease displayed a significant deproteinization capabiliy, with the best efficiency (48%) being recorded for an enzyme to substrate (E/S) ratio of 30 U/mg. Following the deproteinization, chitin was recovered and the authenticity was confirmed by Fourier-transform infrared spectroscopy (FTIR) analysis. On the other hand, the obtained hydrolysate showed a significant enzymatic inhibitory potential against acetylcholinesterase, tyrosinase, amylase, and angiotensin I convertase, and a strong antioxidant activity. Graphical Abstract.


Asunto(s)
Penaeidae , Animales , Anoxybacillus , Quitina , Endopeptidasas , Fermentación
5.
Extremophiles ; 23(6): 687-706, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31407121

RESUMEN

A thermostable extracellular alkaline protease (called SAPA) was produced (4600 U/mL) by Anoxybacillus kamchatkensis M1V, purified to homogeneity, and biochemically characterized. SAPA is a monomer with a molecular mass of 28 kDa estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Native-PAGE, casein-zymography, and size exclusion using high performance liquid chromatography (HPLC). The sequence of its NH2-terminal amino-acid residues showed high homology with those of Bacillus proteases. The SAPA irreversible inhibition by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine proteases family. Optimal activity of SAPA was at pH 11 and 70 °C. The sapA gene was cloned and expressed in the extracellular fraction of E. coli. The highest sequence identity value (95%) of SAPA was obtained with peptidase S8 from Bacillus subtilis WT 168, but with 16 amino-acids of difference. The biochemical characteristics of the purified recombinant extracellular enzyme (called rSAPA) were analogous to those of native SAPA. Interestingly, rSAPA exhibit a degree of hydrolysis that were 1.24 and 2.6 than SAPB from Bacillus pumilus CBS and subtilisin A from Bacillus licheniformis, respectively. Furthermore, rSAPA showed a high detergent compatibility and an outstanding stain removal capacity compared to commercial enzymes: savinase™ 16L, type EX and alcalase™ Ultra 2.5 L.


Asunto(s)
Anoxybacillus/enzimología , Proteínas Bacterianas/química , Detergentes/química , Calor , Péptido Hidrolasas/química , Anoxybacillus/genética , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Péptido Hidrolasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
6.
World J Microbiol Biotechnol ; 35(9): 132, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31432260

RESUMEN

This paper aims to characterize halophilic bacteria inhabiting Algerian Saline Ecosystems (Sebkha and Chott) located in arid and semi-arid ecoclimate zones (Northeastern Algeria). In addition, screening of enzymatic activities, heavy metal tolerance and antagonistic potential against phytopathogenic fungi were tested. A total of 74 bacterial isolates were screened and phylogenetically characterized using 16S rRNA gene sequencing. The results showed a heterogeneous group of microorganisms falling within two major phyla, 52 strains belonging to Firmicutes (70.2%) and 22 strains (30.8%) of γ-Proteobacteria. In terms of main genera present, the isolates were belonging to Bacillus, Halobacillus, Lentibacillus, Oceanobacillus, Paraliobacillus, Planomicrobium, Salicola, Terribacillus, Thalassobacillus, Salibacterium, Salinicoccus, Virgibacillus, Halomonas, Halovibrio, and Idiomarina. Most of the enzymes producers were related to Bacillus, Halobacillus, and Virgibacillus genera and mainly active at 10% of growing salt concentrations. Furthermore, amylase, esterase, gelatinase, and nuclease activities ranked in the first place within the common hydrolytic enzymes. Overall, the isolates showed high minimal inhibitory concentration values (MIC) for Ni2+ and Cu2+ (0.625 to 5 mM) compared to Cd2+ (0.1 to 2 mM) and Zn2+ (0.156 to 2 mM). Moreover, ten isolated strains belonging to Bacillus, Virgibacillus and Halomonas genera, displayed high activity against the pathogenic fungi (Botrytis cinerea, Fusarium oxyporum, F. verticillioides and Phytophthora capsici). This study on halophilic bacteria of unexplored saline niches provides potential sources of biocatalysts and novel bioactive metabolites as well as promising candidates of biocontrol agents and eco-friendly tools for heavy metal bioremediation.


Asunto(s)
Antibiosis , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biota , Microbiología Ambiental , Salinidad , Argelia , Bacterias/clasificación , Bacterias/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Hongos/crecimiento & desarrollo , Hidrolasas/análisis , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Pruebas de Sensibilidad Microbiana , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Extremophiles ; 23(5): 529-547, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31236718

RESUMEN

The present study investigates the purification and biochemical characterization of a novel extracellular serine alkaline protease, subtilisin (called SAPN) from Melghiribacillus thermohalophilus Nari2AT. The highest yield of protease (395 IU/g) with white shrimp shell by-product (40 g/L) as a unique source of nutriments in the growth medium was achieved after 52 h at 55 °C. The monomeric enzyme of about 30 kDa was purified to homogeneity by ammonium sulfate fractionation, heat treatment, followed by sequential column chromatographies. The optimum pH and temperature values for subtilisin activity were pH 10 and 75 °C, respectively, and half lives of 9 and 5 h at 80 and 90 °C, respectively. The sequence of the 25 NH2-terminal residues pertaining of SAPN exhibited a high homology with those of Bacillus subtilisins. The inhibition by DFP and PMSF indicates that this enzyme belongs to the serine proteases family. SAPN was found to be effective in the deproteinization (DDP %) of blue swimming crab (Portunus segnis) and white shrimp (Metapenaeus monoceros) by-products, with a degree of 65 and 82%, respectively. The commercial and the two chitins obtained in this work showed a similar peak pattern in Fourier-Transform Infrared (FTIR) analysis, suggesting that SAPN is suitable for the bio-production of chitin from shell by-products.


Asunto(s)
Bacillaceae/enzimología , Proteínas Bacterianas/química , Quitina/química , Tolerancia a la Sal , Subtilisina/química , Termotolerancia , Exoesqueleto/química , Animales , Proteínas Bacterianas/metabolismo , Crustáceos/química , Estabilidad de Enzimas , Hidrólisis , Subtilisina/metabolismo
8.
Int J Biol Macromol ; 132: 558-574, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30928371

RESUMEN

The present study investigated the purification, biochemical, and molecular characterization of a novel thermostable α-amylase (TfAmy48) from Tepidimonas fonticaldi strain HB23. MALDI-TOF/MS analysis indicated that the purified enzyme is a monomer with a molecular mass of 48,138.10 Da. The results from amino-acid sequence analysis revealed high homology between the 25 NH2-terminal residues of TfAmy48 and those of Gammaproteobacteria α-amylases. The optimum pH and temperature values for α-amylase activity were pH 8 and 80 °C, respectively. Thin-layer chromatography (TLC) analysis showed that the final hydrolyzed products of the enzyme from soluble potato starch were maltopentaose, maltose, and maltotriose, which indicate that TfAmy48 possessed an endo-acting pattern. Compared to Termamyl®300 L, TfAmy48 showed extreme stability and tolerance towards organic solvents and excellent compatibility with some commercial laundry detergents. These proprieties make TfAmy48 enzyme a potential candidate as a cleaning bioadditive in detergent composition. The Tfamy48 gene encoding TfAmy48 was cloned, sequenced, and heterologously-expressed in the extracellular fraction of Escherichia coli strain BL21(DE3)pLysS. The biochemical properties of the extracellular purified recombinant enzyme (rTfAmy48) were similar to those of native one. The highest sequence identity value (97%) was obtained with PsAmy1 α-amylase from Pseudomonas sp. strain KFCC10818, with only 16 amino-acid (aa) residues of difference.


Asunto(s)
Burkholderiales/enzimología , Espacio Extracelular/enzimología , Temperatura , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Burkholderiales/genética , Clonación Molecular , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Metales/farmacología , Modelos Moleculares , Peso Molecular , Dominios Proteicos , Análisis de Secuencia de ADN , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/genética
9.
Carbohydr Res ; 473: 46-56, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30616169

RESUMEN

An extracellular acido-thermostable endochitinase (called ChiA-Mt45) from thermohalophilic Melghiribacillus thermohalophilus strain Nari2AT gen. nov. sp. nov., was purified and biochemically characterized. The maximum chitinase activity recorded after 48-h of incubation at 55 °C was 9000 U/mL. Pure enzyme was obtained after heat treatment (20 min at 90 °C) followed by sequential column chromatographies on fast performance liquid chromatography (FPLC) and high performance liquid chromatography (HPLC). Based on MALDI-TOF/MS analysis, the purified enzyme is a monomer with a molecular mass of 45201.10 Da. The 27 residue NH2-terminal sequence of the enzyme showed high homology with Bacillus GH-18 chitinases family. The optimum pH and temperature values for chitinase activity were pH 3.5 and 90 °C, respectively. In addition, the enzyme was halotolerant and can be classified as an extremozyme. The pure enzyme was completely inhibited by p-chloromercuribenzoic acid (p-CMB) and N-ethylmaleimide (NEM). Its Km and kcat values were 0.253 mg colloidal chitin/mL and 47000 s-1, respectively. Interestingly, its catalytic efficiency was higher than those of chitinases ChiA-Hh59 from Hydrogenophilus hirchii KB-DZ44 and chitodextrinase from Streptomyces griseus, and N-acetyl-ß-glucosaminidase from Trichoderma viride. The studied chitinase exhibited high activity towards colloidal chitin, chitin azure, glycol chitin, while it did not hydrolyse chitibiose and amylose. Additionally, thin-layer chromatography (TLC) analysis from chitin-oligosaccharides showed that ChiA-Mt45 acted as an endosplitting enzyme. Overall, the chitinase ChiA-Mt45 may have great potential for the enzymatic degradation of chitin.


Asunto(s)
Bacillaceae/enzimología , Quitinasas/aislamiento & purificación , Quitinasas/metabolismo , Temperatura , Quitina/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Metales/farmacología , Peso Molecular , Cloruro de Sodio/farmacología , Solventes/farmacología , Especificidad por Sustrato
10.
J Infect Dev Ctries ; 12(1): 15-21, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31628829

RESUMEN

INTRODUCTION: Clostridium difficile is the major etiological agent of nosocomial antibiotics associated diarrhoea. C. difficile infection is associated with considerable morbidity and mortality among hospitalized patients worldwide. Despite its known importance, there is no study on this important pathogen in Algeria. METHODOLOGY: In this prospective study, undertaken between 2013 and 2015, faecal specimens were collected from 159 hospitalized patients with antibiotic-associated diarrhoea in two tertiary health care hospitals in Chlef, Algeria. Faecal samples were cultured on CLO plates Agar with cefoxitin, cycloserine antibiotics and sodium taurocholate. C. difficile suspected colonies were analysed by multiplex PCR for the detection of the toxin genes. C. difficile isolates were analysed by PCR ribotyping and multi-locus tandem repeat analysis. Antimicrobial susceptibility was determined by the E-test method, according to the Clinical and Laboratory Standards Institute protocol. RESULTS: C. difficile was cultured from 11 of 159 stool specimen (6.9%). Seven strains were toxigenic, mainly represented by the 020 and 014 PCR ribotypes and four non toxigenic belong to PCR ribotype 084. All 11 isolates were susceptible to both vancomycin and metronidazole and resistant to ciprofloxacin. CONCLUSIONS: This study, which reported for the first time C. difficile ribotypes circulating in Algerian health care facilities, could paves the way for further more comprehensive studies on this important pathogen, and could be useful to the local health authorities to implement a surveillance program of C. difficile in Algeria.

11.
Int J Biol Macromol ; 106: 338-350, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28827133

RESUMEN

An extracellular acido-thermostable endo-chitinase (called ChiA-Hh59) from thermophilic Hydrogenophilus hirschii strain KB-DZ44, was purified and characterized. The maximum chitinase activity recorded after 36-h of incubation at 60°C was 3000U/ml. Pure enzyme was obtained after heat and acidic treatment, precipitation by ammonium sulphate and acetone, respectively, followed by sequential column chromatographies on Sephacryl S-200 and Mono Q-Sepharose. Based on Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 59103.12-Da. The 22 residue NH2-terminal sequence of the enzyme showed high homology with family-18 bacterial chitinases. The optimum pH and temperature values for chitinase activity were pH 5.0 and 85°C, respectively. The pure enzyme was completely inhibited by p-chloromercuribenzoic acid (p-CMB) and N-ethylmaleimide (NEM). The obtained results suggest that ChiA-Hh59 might be an endo-chitinase. The studied chitinase exhibited high activity towards colloidal chitin, chitin azure, glycol chitin, while it did not hydrolyse chitibiose and amylose. Its Km and kcat values were 0.298mg colloidal chitin/ml and 14400s-1, respectively. Its catalytic efficiency was higher than those of chitodextrinase and ChiA-65. Additionally, Thin-layer chromatography (TLC) analysis from chitin-oligosaccharides showed that ChiA-Hh59 acted as an endo-splitting enzyme. In conclusion, this chitinase may have great potential for the enzymatic degradation of chitin.


Asunto(s)
Proteínas Bacterianas/química , Quitina/química , Quitinasas/química , Hydrogenophilaceae/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/aislamiento & purificación , Biocatálisis , Quitinasas/antagonistas & inhibidores , Quitinasas/aislamiento & purificación , Inhibidores Enzimáticos/química , Estabilidad de Enzimas , Etilmaleimida/química , Expresión Génica , Calor , Concentración de Iones de Hidrógeno , Hydrogenophilaceae/química , Hydrogenophilaceae/clasificación , Hidrólisis , Cinética , Peso Molecular , Filogenia , Especificidad por Sustrato , Ácido p-Cloromercuribenzoico/química
12.
Int J Biol Macromol ; 106: 636-646, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28813685

RESUMEN

Two extracellular peroxidases from Bjerkandera adusta strain CX-9, namely a lignin peroxidase (called LiP BA45) and manganese peroxidase (called MnP BA30), were purified simultaneously by applying successively, ammonium sulfate precipitation-dialysis, Mono-S Sepharose anion-exchange and Sephacryl S-200 gel filtration and biochemically characterized. The sequence of their NH2-terminal amino acid residues showed high homology with those of fungi peroxidases. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzymes MnP BA30 and LiP BA45 were a monomers with a molecular masses 30125.16 and 45221.10Da, respectively. While MnP BA30 was optimally active at pH 3 and 70°C, LiP BA45 showed optimum activity at pH 4 and 50°C. The two enzymes were inhibited by sodium azide and potassium cyanide, suggesting the presence of heme-components in their tertiary structures. The Km and Vmax for LiP BA45 toward 2,4-Dichlorolphenol (2,4-DCP) were 0.099mM and 9.12U/mg, respectively and for MnP BA30 toward 2,6-Dimethylphenol (2,6-DMP), they were 0.151mM and 18.60U/mg, respectively. Interestingly, MnP BA30 and LiP BA45 demonstrated higher catalytic efficiency than that of other tested peroxidases (MnP, LiP, HaP4, and LiP-SN) and marked organic solvent-stability and dye-decolorization efficiency. Data suggest that these peroxidases may be considered as potential candidates for future applications in distaining synthetic-dyes.


Asunto(s)
Clorofenoles/metabolismo , Coriolaceae/enzimología , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Peroxidasas/metabolismo , Xilenos/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Colorantes/metabolismo , Coriolaceae/genética , Pruebas de Enzimas , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Expresión Génica , Calor , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Peroxidasas/genética , Peroxidasas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
13.
World J Microbiol Biotechnol ; 33(6): 126, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28547727

RESUMEN

A halotolerant Actinobacteria strain HR-4 was isolated from a salt lake soil sample in Algerian Sahara. Analysis of 16S rDNA gene sequence showed that strain HR-4 belonged to the genus Nocardiopsis. The similarity level ranges between 97.45 and 99.20% with Nocardiopsis species and Nocardiopsis rosea being the most closely related one. Morphological, physiological and phylogenetic characteristics comparisons showed significant differences with the nearest species. These data strongly suggest that strain HR-4 represents novel species. The antimicrobial activity of strain HR-4 showed an antibacterial activity against Gram-positive bacteria as well as an antifungal one. Two major natural products including a new one were isolated from the culture broth using various separation and purification procedures. The chemical structure established on the basis of spectroscopic studies NMR and by comparing with spectroscopic data from the literature of the two compounds affirm that they are classified in the group of Angucyclinones. This is the first report of a production of this type of molecules by the genus Nocardiopsis. The new natural compound was established as (-)-7-deoxy-8-O-methyltetrangomycin with a new configuration.


Asunto(s)
Actinomycetales/aislamiento & purificación , Actinomycetales/metabolismo , Antraquinonas/química , Antraquinonas/aislamiento & purificación , Antraquinonas/farmacología , Microbiología del Suelo , Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Actinobacteria/patogenicidad , Actinomycetales/clasificación , Actinomycetales/genética , África del Norte , Argelia , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ADN Ribosómico/genética , Genes Bacterianos/genética , Bacterias Grampositivas/efectos de los fármacos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Microbiol Res ; 186-187: 119-31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242149

RESUMEN

Halophilic archaea were isolated from different chotts and sebkha, dry salt lakes and salt flat respectively, of the Algerian Sahara and characterized using phenotypic and phylogenetic approaches. From 102 extremely halophilic strains isolated, forty three were selected and studied. These strains were also screened for their antagonistic potential and the production of hydrolytic enzymes. Sequencing of the 16S rRNA genes and phylogenetic analysis allowed the identification of 10 archaeal genera within the class Halobacteria: Natrinema (13 strains), Natrialba (12 strains), Haloarcula (4 strains), Halopiger (4 strains), Haloterrigena (3 strains), Halorubrum (2 strains), Halostagnicola (2 strains), Natronococcus, Halogeometricum and Haloferax (1 strain each). The most common producers of antimicrobial compounds belong to the genus Natrinema while the most hydrolytic isolates, with combined production of several enzymes, belong to the genus Natrialba. The strain affiliated to Halopiger djelfamassilliensis was found to produce some substances of interest (halocins, anti-Candida, enzymes). After partial purification and characterization of one of the strains Natrinema gari QI1, we found similarities between the antimicrobial compound and the halocin C8. Therefore, the gene encoding halocin C8 was amplified and sequenced.


Asunto(s)
Antiinfecciosos/metabolismo , Archaea/aislamiento & purificación , Archaea/metabolismo , Microbiología Ambiental , África del Norte , Argelia , Archaea/clasificación , Archaea/genética , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Enzimas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Int J Biol Macromol ; 86: 321-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26812107

RESUMEN

The current paper reports on the purification of an extracellular thermostable keratinase (KERCA) produced from Caldicoprobacter algeriensis strain TH7C1(T), a thermophilic, anaerobic bacterium isolated from a hydrothermal hot spring in Algeria. The maximum keratinase activity recorded after 24-h of incubation at 50 °C was 21000 U/ml. The enzyme was purified by ammonium sulfate precipitation-dialysis and heat treatment (2h at 50 °C) followed by UNO Q-6 FPLC anion exchange chromatography, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 33246.10 Da. The sequence of the 23 N-terminal residues of KERCA showed high homology with those of bacterial keratinases. Optimal activity was achieved at pH 7 and 50 °C. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggests that it belongs to the serine keratinase family. KERCA displayed higher levels of hydrolysis and catalytic efficiency than keratinase KERQ7 from Bacillus tequilensis strain Q7. These properties make KERCA a potential promising and eco-friendly alternative to the conventional chemicals used for the dehairing of goat, sheep, and bovine hides in the leather processing industry.


Asunto(s)
Firmicutes/enzimología , Cabello/metabolismo , Péptido Hidrolasas/metabolismo , Serina/metabolismo , Piel/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Firmicutes/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , Hidrólisis , Cinética , Metales/farmacología , Péptido Hidrolasas/química , Péptido Hidrolasas/aislamiento & purificación , Sustancias Reductoras/farmacología , Temperatura
16.
Int J Biol Macromol ; 81: 299-307, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26261082

RESUMEN

Caldicoprobacter guelmensis isolated from the hydrothermal hot spring of Guelma (Algeria) produced high amounts of extracellular thermostable serine alkaline protease (called SAPCG) (23,000U/mL). The latter was purified by ammonium sulphate precipitation, UNO Q-6 FPLC and Zorbex PSM 300 HPLC, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer, with a molecular mass of 55,824.19Da. The 19 N-terminal residue sequence of SAPCG showed high homology with those of microbial proteases. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggested its belonging to the serine protease family. It showed optimum protease activity at pH 10 and 70°C with casein as a substrate. The thermoactivity and thermostability of SAPCG were enhanced in the presence of 2mM Ca(2+). Its half-life times at 80 and 90°C were 180 and 60min, respectively. Interestingly, the SAPCG protease exhibited significant compatibility with iSiS and Persil, and wash performance analysis revealed that it could remove blood-stains effectively. Overall, SAPCG displayed a number of attractive properties that make it a promising candidate for future applications as an additive in detergent formulations.


Asunto(s)
Proteínas Bacterianas/química , Clostridiales/enzimología , Detergentes/farmacología , Endopeptidasas/química , Serina Proteasas/química , Secuencia de Aminoácidos , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Iones/química , Cinética , Metales/química , Especificidad por Sustrato , Temperatura , Termodinámica
17.
Int J Syst Evol Microbiol ; 65(Pt 4): 1172-1179, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25604343

RESUMEN

A novel filamentous, endospore-forming, thermophilic and moderately halophilic bacterium designated strain Nari2A(T) was isolated from soil collected from an Algerian salt lake, Chott Melghir. The novel isolate was Gram-staining-positive, aerobic, catalase-negative and oxidase-positive. Optimum growth occurred at 50-55 °C, 7-10% (w/v) NaCl and pH 7-8. The strain exhibited 95.4, 95.4 and 95.2% 16S rRNA gene sequence similarity to Thalassobacillus devorans G19.1(T), Sediminibacillus halophilus EN8d(T) and Virgibacillus kekensis YIM-kkny16(T), respectively. The major menaquinone was MK-7. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, three unknown phosphoglycolipids and two unknown phospholipids. The predominant cellular fatty acids were iso-C(15 : 0) and iso-C(17 : 0). The DNA G+C content was 41.9 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain Nari2A(T) is considered to represent a novel species of a new genus in the family Bacillaceae , order Bacillales , for which the name Melghiribacillus thermohalophilus gen. nov., sp. nov. is proposed. The type strain of Melghiribacillus thermohalophilus is Nari2A(T) ( = DSM 25894(T) = CCUG 62543(T)).


Asunto(s)
Bacillaceae/clasificación , Lagos/microbiología , Filogenia , Argelia , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , Fosfolípidos/química , ARN Ribosómico 16S/genética , Salinidad , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Extremophiles ; 18(6): 1049-55, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25138277

RESUMEN

Halorubrum sp. SSR was isolated from a solar saltern in Algeria. The strain exhibited a high antibiotic activity against the indicator strain Natronorubrum aibiense G23, and the bioactive compound showed thermal, acid and alkali stability. SSR was grown on agar-supported cultivation (AgSF) to compare yields and applicability with traditional submerged cultivation. AgSF scale-up was implemented taking benefit from the solid-state cultivation prototype Platotex. This technology leads to high amounts of the target Halocin and facilitate the downstream steps. The antibiotic compound was purified according to a fast efficient procedure including ion exchange chromatography followed by a fractionation on C18 Sep-Pack cartridge. The compound was identified as Halocin C8 according to N-terminal amino acid sequencing and high-resolution mass spectrometry.


Asunto(s)
Reactores Biológicos , Halorubrum/crecimiento & desarrollo , Microbiología Industrial/métodos , Péptidos/química , Agar/análisis , Péptidos Catiónicos Antimicrobianos , Medios de Cultivo/química , Fermentación , Halorubrum/aislamiento & purificación , Halorubrum/metabolismo , Microbiología Industrial/instrumentación , Péptidos/metabolismo
19.
Appl Biochem Biotechnol ; 174(5): 1969-81, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25161038

RESUMEN

To date, xylanases have expanded their use in many processing industries, such as pulp, paper, food, and textile. This study aimed the production and partial characterization of a thermostable xylanase from a novel thermophilic anaerobic bacterium Caldicoprobacter algeriensis strain TH7C1(T) isolated from a northeast hot spring in Algeria. The obtained results showed that C. algeriensis xylanase seems not to be correlated with the biomass growth profile whereas the maximum enzyme production (140.0 U/ml) was recorded in stationary phase (18 h). The temperature and pH for optimal activities were 70 °C and 11.0, respectively. The enzyme was found to be stable at 50, 60, 70, and 80 °C, with a half-life of 10, 9, 8, and 4 h, respectively. Influence of metal ions on enzyme activity revealed that Ca(+2) enhances greatly the relative activity to 151.3 %; whereas Hg(2+) inhibited significantly the enzyme. At the best of our knowledge, this is the first report on the production of xylanase by the thermophilic bacterium C. algeriensis. This thermo- and alkaline-tolerant xylanase could be used in pulp bleaching process.


Asunto(s)
Clostridium/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , Argelia , Activación Enzimática , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Especificidad por Sustrato , Temperatura
20.
Biomed Res Int ; 2014: 317524, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24977147

RESUMEN

Extreme environments may often contain unusual bacterial groups whose physiology is distinct from those of normal environments. To satisfy the need for new bioactive pharmaceuticals compounds and enzymes, we report here the isolation of novel bacteria from an extreme environment. Thirteen selected haloalkalitolerant and haloalkaliphilic bacteria were isolated from Algerian Sahara Desert soils. These isolates were screened for the presence of genes coding for putative antitumor compounds using PCR based methods. Enzymatic, antibacterial, and antifungal activities were determined by using cultural dependant methods. Several of these isolates are typical of desert and alkaline saline soils, but, in addition, we report for the first time the presence of a potential new member of the genus Nocardia with particular activity against the yeast Saccharomyces cerevisiae. In addition to their haloalkali character, the presence of genes coding for putative antitumor compounds, combined with the antimicrobial activity against a broad range of indicator strains and their enzymatic potential, makes them suitable for biotechnology applications.


Asunto(s)
Antiinfecciosos/química , Antineoplásicos/química , Bacterias/química , Microbiología del Suelo , África del Norte , Argelia , Antifúngicos/química , Biotecnología , Cartilla de ADN/química , Geografía , Datos de Secuencia Molecular , Nocardia/química , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/efectos de los fármacos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...