Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(16): 4021-4032, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38608273

RESUMEN

In this paper, X-ray diffraction (XRD), differential scanning calorimetry (DSC), broadband dielectric (BDS), and Fourier transform infrared (FTIR) spectroscopy supported by molecular dynamics (MD) simulations and quantum chemical computations were applied to investigate the structural and thermal properties, molecular dynamics, and H-bonding pattern of R-, S-, and RS-flurbiprofen (FLP). Experimental data indicated various spatial molecular arrangements in crystalline forms of examined systems, which seemed to disappear in the liquid state. Surprisingly, deeper analysis of high-pressure dielectric data revealed unexpected variation in the activation volume of pure enantiomers and a racemate. MD simulations showed that it is an effect of the clusterization phenomenon and a higher population of small associates in the former samples. Moreover, theoretical consideration exposed the particular role of unspecific F-Π interactions as a driving force underlying local molecular arrangements of molecules in the liquid and the crystal lattice of R-, S-, and RS-FLP.

2.
Nanoscale ; 16(13): 6636-6647, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38481367

RESUMEN

The properties of confined materials are assumed to be governed by the phenomena occurring at the interface, especially the formation of an irreversible adsorption layer (IAL), which has been widely discussed and detected in the case of thin polymer films and silica nanoparticles. In this paper, we present a novel experimental approach allowing us to reveal the formation of an IAL in two phenyl alcohols infiltrated into various mesoporous silica templates. The proposed methodology (based on evaporation) allowed us to detect the alterations in the OH and aromatic CH stretching vibration bands in infrared spectra, which were considered as evidence of the existence of IAL in constrained systems. Such interpretation was also confirmed by complementary molecular dynamics (MD) simulations that indicated the creation of much stronger hydrogen bonds between alcohols and silanol units than between alcohols themselves. Moreover, computation allowed us to identify additional enormously strong π-stacking interactions between phenyl rings stabilizing the interfacial layer. MD simulations also shed new light on the clustering process of both alcohols under confinement. Simulation and experimental data presented in this paper allowed a much deeper understanding of the processes occurring at the interface-formation of IAL and the association phenomenon at the nanoscale level.

3.
Pharmaceutics ; 16(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276506

RESUMEN

In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, during the formation of binary mixtures (BMs) containing different polymers and MTZ, we found that linear PVPs exhibit maximum miscibility with the drug at a 50:50 weight ratio (w/w), while the star-shaped polymer mixes with MTZ even at a 30:70 w/w. To explain these observations, comprehensive studies of MTZ-PVP formulations with various contents of both components were performed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The obtained results clearly showed that the polymer's topology plays a significant role in the type of interactions occurring between the matrix and MTZ. Additionally, we established that for MTZ-PVP 50:50 and 75:25 w/w BMs, linear polymers have the most substantial impact on inhibiting the crystallization of API. The star-shaped macromolecule turned out to be the least effective in stabilizing amorphous MTZ at these polymer concentrations. Nevertheless, long-term structural investigations of the MTZ-starPVP 30:70 w/w system (which is not achievable for linear PVPs) demonstrated its complete amorphousness for over one month.

4.
J Phys Chem Lett ; 15(1): 127-135, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38147681

RESUMEN

The behavior of hydrogen bonds under extreme pressure is still not well understood. Until now, the shift of the stretching vibration band of the X-H group (X = the donor atom) in infrared spectra has been attributed to the variation in the length of the covalent X-H bond. Herein, we combined infrared spectroscopy and X-ray diffraction experimental studies of two H-bonded liquid hexane derivatives, i.e., 2-ethyl-1-hexanol and 2-ethyl-1-hexylamine, in diamond anvil cells at pressures up to the GPa level, with molecular dynamics simulations covering similar thermodynamic conditions. Our findings revealed that the observed changes in the X-H stretching vibration bands under compression are not primarily due to H-bond shortening resulting from increased density but mainly due to cooperative enhancement of H-bonds caused by intensified molecular clustering. This sheds new light on the nature of H-bond interactions and the structure of liquid molecular systems under compression.

5.
J Phys Chem B ; 127(42): 9102-9110, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37846653

RESUMEN

A series of four alcohols, n-propanol and its halogen (Cl, Br, and I) derivatives, were selected to study the effects of variation in polarity and halogen-driven interactions on the hydrogen bonding pattern and supramolecular structure by means of experimental and theoretical methods. It was demonstrated on both grounds that the average strength of H-bonds remains the same but dissociation enthalpy, the size of molecular nanoassemblies, as well as long-range correlations between dipoles vary with the molecular weight of halogen atom. Further molecular dynamics simulations indicated that it is connected to the variation in the molecular order introduced by specific halogen-based hydrogen bonds and halogen-halogen interactions. Our results also provided important experimental evidence supporting the assumption of the transient chain model on the molecular origin of the structural process in self-assembling alcohols.

6.
Sci Rep ; 13(1): 8890, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264074

RESUMEN

In this paper, the molecular dynamics at different thermodynamic conditions of hydrogen-bonded (H-bonded) active pharmaceutical ingredient-ticagrelor (TICA) have been investigated. Extensive high-pressure (HP) dielectric studies revealed surprising high sensitivity of the structural (α)-relaxation to compression. They also showed that unexpectedly the shape of the α-peak remains invariable at various temperature (T) and pressure (p) conditions at constant α-relaxation time. Further infrared measurements on the ordinary and pressure densified glasses of the examined compound indicated that the hydrogen-bonding pattern in TICA is unchanged by the applied experimental conditions. Such behavior was in contrast to that observed recently for ritonavir (where the organization of hydrogen bonds varied at high p) and explained the lack of changes in the width of α-dispersion with compression. Moreover, HP dielectric measurements performed in the glassy state of TICA revealed the high sensitivity of the slow secondary (ß)-relaxation (Johari-Goldstein type) to pressure and fulfillment of the isochronal superpositioning of α- and JG-ß-relaxation times. Additionally, it was found that the activation entropy for the ß-process, estimated from the Eyring equation (a high positive value at 0.1 MPa) slightly increases with compression. We suggested that the reason for that are probably small conformational variations of TICA molecules at elevated p.


Asunto(s)
Simulación de Dinámica Molecular , Ticagrelor , Temperatura , Termodinámica , Preparaciones Farmacéuticas
7.
Phys Chem Chem Phys ; 25(20): 14590-14597, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37191250

RESUMEN

In this paper, we have examined a series of phenyl-substituted primary monohydroxy alcohols (phenyl alcohols, PhAs), from ethanol to hexanol by means of dielectric and Fourier transform infrared (FTIR) spectroscopies supported by the mechanical investigations. The combination of both dielectric and mechanical data allows calculation of the energy barrier, Ea, for dissociation by the Rubinstein approach developed to describe the dynamical properties of self-assembling macromolecules. It was observed that the determined activation energy remains constant, |Ea,RM| ∼ 12.9-14.2 kJ mol-1, regardless of the molecular weight of the examined material. Surprisingly, the obtained values agree very well with Ea of the dissociation process determined from the FTIR data analysed within the van't Hoff relationship, where Ea,vH ∼ 9.13-13.64 kJ mol-1. Thus, the observed agreement between Ea determined by both applied approaches clearly implies that in the case of the examined series of PhAs, the dielectric Debye-like process is governed by the association-dissociation phenomenon as proposed by the transient chain model.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122794, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37167743

RESUMEN

In this paper, several experimental techniques, i.e., differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, Raman, and broadband dielectric spectroscopy were applied to study the nature of the phase transitions in 1-adamantylamine (1-NH2-ADM, C10H17N) and 1-adamantanol (1-OH-ADM, C10H16O). Calorimetric measurements showed one and three endothermic peaks in thermograms for the latter and the former substance, respectively. Indeed, results of spectroscopic investigations indicated that the observed thermal events in 1-NH2-ADM correspond to transitions between various plastic crystal (PC) phases (I, II, III, IV), while the endothermic process in 1-OH-ADM can be assigned to a phase transition between the PC and the ordinary crystal (OC). Especially interesting were the outcomes of dielectric studies carried out both at ambient and high-pressure conditions, during heating and cooling cycles. They showed: i) noticeable changes in the frequency dependencies of the imaginary (ε'') and real (ε') parts of the complex dielectric permittivity that occurred around temperatures of the characteristic endothermic events detected by the calorimetry, and ii) significant fluctuations of ε'' and ε' at pressures attributed to the respective phase transitions. Moreover, the pressure coefficients of the phase transition temperatures were estimated to be approximately equal to 0.2 K/MPa for both compounds. In turn, volume variation (ΔV) at the PC (II)-PC (III) and PC (III)-PC (IV) transition temperatures for 1-NH2-ADM was essentially different than ΔV for the PC-OC transition in 1-OH-ADM.

9.
Langmuir ; 39(1): 533-544, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36575053

RESUMEN

In the present study, the behavior of the calcium channel blocker cilnidipine (CLN) infiltrated into silica (SiO2) and anodic aluminum oxide (AAO) porous membranes characterized by a similar pore size (d = 8 nm and d = 10 nm, respectively) as well as the bulk sample has been investigated using differential scanning calorimetry, broadband dielectric spectroscopy (BDS), and Fourier-transform infrared spectroscopy (FTIR) techniques. The obtained data suggested the existence of two sets of CLN molecules in both confined systems (core and interfacial). They also revealed the lack of substantial differences in inter- and intramolecular dynamics of nanospatially restricted samples independently of the applied porous membranes. Moreover, the annealing experiments (isothermal time-dependent measurements) performed on the confined CLN clearly indicated that the whole equilibration process under confinement is governed by structural relaxation. It was also found that the ßanneal parameters obtained from BDS and FTIR data upon equilibration of both confined samples are comparable (within 10%) to each other, while the equilibration constants are significantly different. This finding strongly emphasizes that there is a close connection between the inter- and intramolecular dynamics under nanospatial restriction.


Asunto(s)
Dihidropiridinas , Dióxido de Silicio , Dióxido de Silicio/química , Óxido de Aluminio/química , Espectroscopía Infrarroja por Transformada de Fourier
10.
Chem Commun (Camb) ; 58(93): 13015-13018, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36341972

RESUMEN

In this paper, efficient MMA photo O-ATRP protocols conducted inside nanoreactors varying in nanostructured interfaces are reported for the first time. We showed that the microstructure of recovered polymers could be easily tuned just by implementing a given type of nanochannel (d = 10, 19-28, 35, 160 nm).

11.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36015118

RESUMEN

In this study, several experimental techniques were applied to probe thermal properties, molecular dynamics, crystallization kinetics and intermolecular interactions in binary mixtures (BMs) composed of flutamide (FL) and various poly(N-vinylpyrrolidone) (PVP) polymers, including a commercial product and, importantly, samples obtained from high-pressure syntheses, which differ in microstructure (defined by the tacticity of the macromolecule) from the commercial PVP. Differential Scanning Calorimetry (DSC) studies revealed a particularly large difference between the glass transition temperature (Tg) of FL+PVPsynth. mixtures with 10 and 30 wt% of the excipient. In the case of the FL+PVPcomm. system, this effect was significantly lower. Such unexpected findings for the former mixtures were strictly connected to the variation of the microstructure of the polymer. Moreover, combined DSC and dielectric measurements showed that the onset of FL crystallization is significantly suppressed in the BM composed of the synthesized polymers. Further non-isothermal DSC investigations carried out on various FL+10 wt% PVP mixtures revealed a slowing down of FL crystallization in all FL-based systems (the best inhibitor of this process was PVP Mn = 190 kg/mol). Our research indicated a significant contribution of the microstructure of the polymer on the physical stability of the pharmaceutical-an issue completely overlooked in the literature.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121726, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970088

RESUMEN

The nature of H-bonding interactions is still far from being understood despite intense experimental and theoretical studies on this subject carried out by the leading research centers. In this paper, by a combination of unique high-pressure infrared, dielectric and volumetric data, the intramolecular dynamics of hydroxyl moieties (which provides direct information about H-bonds) was studied along various isolines, i.e., isotherms, isobars, isochrones, and isochores, in a simple monohydroxy alcohol (2-ethyl-1-hexanol). This allowed us to discover that the temperature controls the intermolecular hydrogen bonds, which then affect the intramolecular dynamics of OH units. Although the role of density fluctuations gets stronger as temperature rises. We also demonstrated a clear connection between the intra- and intermolecular dynamics of the associating liquid at high pressure. The data reported herein open a new perspective to explore this important aspect of the glass transition phenomenon and understand H-bonding interactions at varying thermodynamic conditions.


Asunto(s)
Hexanoles , Enlace de Hidrógeno , Alcaloides de Pirrolicidina , Temperatura
13.
Sci Rep ; 12(1): 14324, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35996006

RESUMEN

In this paper, thermal properties, atomic-scale structure, and molecular dynamics (at ambient and high pressure) of native melatonin (MLT) and its partially-deuterated derivative (MLT-d2) have been investigated. Based on infrared spectroscopy, it was shown that treating MLT with D2O causes the replacement of hydrogen atoms attached to the nitrogen by deuterium. The degree of such substitution was very high (> 99%) and the deuterated sample remained stable after exposure to the air as well as during the melting and vitrification processes. Further calorimetric studies revealed the appearance of a peculiar thermal event before the melting of crystalline MLT-d2, which was assigned by the X-ray diffraction to a local negative thermal expansion of the unit cell. Finally, the high-pressure dielectric experiments indicated a few interesting findings, including the variation in the shape of the structural relaxation peak during compression, the difference in the pressure evolution of the glass transition temperature, and the temperature dependence of activation volume for both MLT species. The variations in these parameters manifest a different impact of the compression/densification on the dynamics of hydrogen and deuterium bonds in the native and partially-deuterated MLT, respectively.


Asunto(s)
Melatonina , Deuterio , Temperatura , Temperatura de Transición , Difracción de Rayos X
14.
Int J Pharm ; 624: 122025, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35850185

RESUMEN

Modified oligosaccharides with cyclic topology seem to be promising excipients for the preparation of Amorphous Solid Dispersions (ASDs), especially with those Active Pharmaceutical Ingredients (APIs), which have a strong crystallization tendency from the amorphous/glassy state. Herein, the usefulness of two acetylated cyclodextrins (ac-α-CD and ac-ß-CD) with various molecular weights (Mw) as stabilizers for the supercooled metronidazole (Met) has been discussed. X-ray diffraction (XRD) studies carried out on Met-acCDs mixtures (prepared in molar ratios from 1:2 to 5:1) showed that the system with ac-α-CD containing the highest amount of API (5:1 m/m) crystallizes immediately after preparation, whereas all Met-ac-ß-CD ASDs remain stable. What is more, long-term XRD measurements confirmed that the Met-ac-α-CD 2:1 m/m system crystallizes after 100 days of storage in contrast to the same system containing ac-ß-CD. The non-isothermal calorimetric data revealed that the activation barrier for crystallization (Ecr) in ASDs with the oligosaccharide having a greater Mw (i.e., composed of seven acGLU molecules) is slightly higher. Finally, to explain the differences in behavior between the mixtures with both acCDs, infrared studies, DFT calculations and Molecular Dynamics simulations were performed. All methods excluded the scenario of API incorporation inside the acCDs' core. On the other hand, obtained results suggested that in comparison to ac-α-CD, the greater amount of Met molecules might be bounded on the outside surface of ac-ß-CD. Therefore, this modified saccharide is a better stabilizer of the examined API.


Asunto(s)
Ciclodextrinas , Metronidazol , Rastreo Diferencial de Calorimetría , Cristalización/métodos , Estabilidad de Medicamentos , Excipientes/química , Solubilidad , Difracción de Rayos X
15.
Mol Pharm ; 19(1): 80-90, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851124

RESUMEN

In this paper, several experimental techniques [X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetry, Fourier transform infrared spectroscopy, and broad-band dielectric spectroscopy] have been applied to characterize the structural and thermal properties, H-bonding pattern, and molecular dynamics of amorphous bosentan (BOS) obtained by vitrification and cryomilling of the monohydrate crystalline form of this drug. Samples prepared by these two methods were found to be similar with regard to their internal structure, H-bonding scheme, and structural (α) dynamics in the supercooled liquid state. However, based on the analysis of α-relaxation times (dielectric measurements) predicted for temperatures below the glass-transition temperature (Tg), as well as DSC thermograms, it was concluded that the cryoground sample is more aged (and probably more physically stable) compared to the vitrified one. Interestingly, such differences in physical properties turned out to be reflected in the lower intrinsic dissolution rate of BOS obtained by cryomilling (in the first 15 min of dissolution test) in comparison to the vitrified drug. Furthermore, we showed that cryogrinding of the crystalline BOS monohydrate leads to the formation of a nearly anhydrous amorphous sample. This finding, different from that reported by Megarry et al. [ Carbohydr. Res. 2011, 346, 1061-1064] for trehalose (TRE), was revealed on the basis of infrared and thermal measurements. Finally, two various hypotheses explaining water removal upon cryomilling have been discussed in the manuscript.


Asunto(s)
Bosentán/química , Rastreo Diferencial de Calorimetría , Espectroscopía Dieléctrica , Liberación de Fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Vitrificación , Difracción de Rayos X
16.
Eur J Pharm Sci ; 164: 105894, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089820

RESUMEN

In this paper, the molecular dynamics as well as inter- and intramolecular interactions in the homogenous solid dispersions (SDs) of active pharmaceutical ingredient - probucol (PRO) with acetylated glucose (acGLU), acetylated sucrose (acSUC), and sucrose acetoisobutyrate (aibSUC), prepared in 5:1 molar ratio, have been investigated using broadband dielectric (BD) and Fourier transform infrared (FTIR) spectroscopy. Importantly, high pressure dielectric measurements revealed that as for neat PRO, a breakdown of the isochronal structural (α) and JG-ß exact superpositioning, due to increasing separation between both processes under compression, can also be detected in its mixtures with acetylated saccharides (acSACCHs). Furthermore, the analysis of temperature dependences of JG-ß-relaxation times for PRO and PRO-acSACCH SDs at selected isobaric conditions indicated the increase in the cooperativity of the secondary process (reflected in the value of the activation entropy, ΔSß) at elevated pressure in all systems. The mere addition of the small amount of excipient to neat PRO (p = 0.1 MPa) resulted in a greater value of ΔSß (it was the most noticeable in the case of aibSUC). Further FTIR studies carried out on the pressure densified glasses of PRO, and binary mixtures suggested that the observed changes in the cooperativity of the JG-ß-process, as well as the failure of the exact isochronal superpositioning of α- and JG-ß relaxation times, are due to varying H-bond pattern in the examined single- and two-component systems at high compression/in the presence of saccharide.


Asunto(s)
Simulación de Dinámica Molecular , Probucol , Cristalización , Temperatura , Temperatura de Transición
17.
Mol Pharm ; 18(1): 347-358, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33355470

RESUMEN

The impact of the chain length or dispersity of polymers in controlling the crystallization of amorphous active pharmaceutical ingredients (APIs) has been discussed for a long time. However, because of the weak control of these parameters in the majority of macromolecules used in pharmaceutical formulations, the abovementioned topic is poorly understood. Herein, four acetylated oligosaccharides, maltose (acMAL), raffinose (acRAF), stachyose (acSTA), and α-cyclodextrin (ac-α-CD) of growing chain lengths and different topologies (linear vs cyclic), mimicking the growing backbone of the polymer, were selected to probe the influence of these structural factors on the crystallization of naproxen (NAP)-an API that does not vitrify regardless of the cooling rate applied in our experiment. It was found that in equimolar systems composed of NAP and linear acetylated oligosaccharides, the progress and activation barrier for crystallization are dependent on the molecular weight of the excipient despite the fact that results of Fourier transform infrared studies indicated that there is no difference in the interaction pattern between measured samples. On the other hand, complementary dielectric, calorimetric, and X-ray diffraction data clearly demonstrated that NAP mixed with ac-α-CD (cyclic saccharide) does not tend to crystallize even in the system with a much higher content of APIs. To explain this interesting finding, we have carried out further density functional theory computations, which revealed that incorporation of NAP into the cavity of ac-α-CD is hardly possible because this state is of much higher energy (up to 80 kJ/mol) with respect to the one where the API is located outside of the saccharide torus. Hence, although at the moment, it is very difficult to explain the much stronger impact of the cyclic saccharide on the suppression of crystallization and enhanced stability of NAP with respect to the linear carbohydrates, our studies clearly showed that the chain length and the topology of the excipient play a significant role in controlling the crystallization of this API.


Asunto(s)
Naproxeno/química , Oligosacáridos/química , Rastreo Diferencial de Calorimetría/métodos , Carbohidratos/química , Cristalización/métodos , Composición de Medicamentos/métodos , Excipientes/química , Simulación de Dinámica Molecular , Peso Molecular , Transición de Fase/efectos de los fármacos , Solubilidad/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos
18.
Macromolecules ; 53(22): 10225-10233, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33250524

RESUMEN

We examined the behavior of poly(mercaptopropyl)methylsiloxane (PMMS), characterized by a polymer chain backbone of alternate silicon and oxygen atoms substituted by a polar pendant group able to form hydrogen bonds (-SH moiety), by means of infrared (FTIR) and dielectric (BDS) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and rheology. We observed that the examined PMMS forms relatively efficient hydrogen bonds leading to the association of chains in the form of ordered lamellar-like hydrogen-bonded nanodomains. Moreover, the recorded mechanical and dielectric spectra revealed the presence of two relaxation processes. A direct comparison of collected data and relaxation times extracted from two experimental techniques, BDS and rheology, indicates that they monitor different types of the mobility of PMMS macromolecules. Our mechanical measurements revealed the presence of Rouse modes connected to the chain dynamics (slow process) and segmental relaxation (a faster process), whereas in the dielectric loss spectra we observed two relaxation processes related most likely to either the association-dissociation phenomenon within lamellar-like self-assemblies or the sub-Rouse mode (α'-slower process) and segmental (α-faster process) dynamics. Data presented herein allow a better understanding of the peculiar dynamical properties of polysiloxanes and associating polymers having strongly polar pendant moieties.

19.
Nano Lett ; 20(8): 5714-5719, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32559092

RESUMEN

Herein we show that the nanostructured interface obtained via modulation of the pore size has a strong impact on the segmental and chain dynamics of two poly(propylene glycol) (PPG) derivatives with various molecular weights (Mn = 4000 g/mol and Mn = 2000 g/mol). In fact, a significant acceleration of the dynamics was observed for PPG infiltrated into ordinary alumina templates (Dp = 36 nm), while bulklike behavior was found for samples incorporated into membranes of modulated diameter (19 nm < Dp < 28 nm). We demostrated that the modulation-induced roughness reduces surface interactions of polymer chains near the interface with respect to the ones adsorbed to the ordinary nanochannels. Interestingly, this effect is noted despite the enhanced wettability of PPG in the latter system. Consequently, as a result of weaker H-bonding surface interactions, the conformation of segments seems to locally mimic the bulk arrangement, leading to bulklike dynamics, highlighting the crucial impact of the interface on the overall behavior of confined materials.

20.
J Colloid Interface Sci ; 576: 217-229, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32417683

RESUMEN

In this paper, the molecular dynamics, H-bonding pattern and wettability of the primary and secondary monohydroxyalcohols, 2-ethyl-1-hexanol (2E1H), 2-ethyl-1-butanol (2E1B) and 5-methyl-3-heptanol (5M3H) infiltrated into native and functionalized silica and alumina pores having pore diameters, d = 4 nm and d = 10 nm, have been studied with the use of Broadband Dielectric (BDS) and Fourier Transform InfraRed (FTIR) spectroscopies, as well as contact angle measurements. We found significant differences in the behavior of alcohols forming chain- (2E1H, 2E1B) or micelle-like (5M3H) supramolecular structures despite of their similarities in the wettability and interfacial energy. It turned out that nanoassociates as well as H-bonds are more or less affected by the confinement dependently on the chemical structure and alcohol order. Moreover, a peculiar behavior of the self-assemblies at the interface was noted in the latter material (5M3H). Finally, it was found that irrespectively to the sample, type of pores, functionalization, the temperature evolution of Debye relaxation times, τD, of the confined systems deviates from the bulk behavior always at similar τD due to vitrification of the interfacial layer. This finding is a clear indication that unexpectedly dynamics (mobility) of the supramolecular structures close to the hydrophilic and hydrophobic surfaces is similar in each system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...