Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961573

RESUMEN

Arenaviruses, a family of negative-sense RNA viruses spread by rodents, are a leading cause of severe hemorrhagic fever in humans. Due to a paucity of antivirals and vaccines for arenaviruses, there is a need to identify new mechanisms for interfering with arenavirus replication. In several negative-sense RNA viruses, natural viral interference results from the production of non-standard viral genomes (nsVGs) that activate the innate immune system and/or compete for essential viral products. Although it is well established that arenaviruses produce strong interfering activities, it is unknown if they produce interfering nsVGs. Here we show that arenaviruses produce deletions within the intergenic region of their Small (S) RNA genome, which prevents the production of viral mRNA and protein. These deletions are more abundant when arenaviruses are grown in high-interfering conditions and are associated with inhibited viral replication. Overall, we found that arenaviruses produce internal deletions within the S RNA intergenic region that are produced by arenaviruses and can block viral replication. These natural arenavirus interfering molecules provide a new target for the generation of antivirals as well as an alternative strategy for producing attenuated arenaviruses for vaccines.

2.
PLoS Biol ; 21(11): e3002381, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983241

RESUMEN

Antiviral responses are often accompanied by translation inhibition and formation of stress granules (SGs) in infected cells. However, the triggers for these processes and their role during infection remain subjects of active investigation. Copy-back viral genomes (cbVGs) are the primary inducers of the mitochondrial antiviral signaling (MAVS) pathway and antiviral immunity during Sendai virus (SeV) and respiratory syncytial virus (RSV) infections. The relationship between cbVGs and cellular stress during viral infections is unknown. Here, we show that SGs form during infections containing high levels of cbVGs, and not during infections with low levels of cbVGs. Moreover, using RNA fluorescent in situ hybridization to differentiate accumulation of standard viral genomes from cbVGs at a single-cell level during infection, we show that SGs form exclusively in cells that accumulate high levels of cbVGs. Protein kinase R (PKR) activation is increased during high cbVG infections and, as expected, is necessary for virus-induced SGs. However, SGs form independent of MAVS signaling, demonstrating that cbVGs induce antiviral immunity and SG formation through 2 independent mechanisms. Furthermore, we show that translation inhibition and SG formation do not affect the overall expression of interferon and interferon stimulated genes during infection, making the stress response dispensable for global antiviral immunity. Using live-cell imaging, we show that SG formation is highly dynamic and correlates with a drastic reduction of viral protein expression even in cells infected for several days. Through analysis of active protein translation at a single-cell level, we show that infected cells that form SGs show inhibition of protein translation. Together, our data reveal a new cbVG-driven mechanism of viral interference where cbVGs induce PKR-mediated translation inhibition and SG formation, leading to a reduction in viral protein expression without altering overall antiviral immunity.


Asunto(s)
Interferones , Proteínas Virales , Humanos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Hibridación Fluorescente in Situ , Interferones/metabolismo , Biosíntesis de Proteínas , Genoma Viral , Gránulos Citoplasmáticos/metabolismo , Replicación Viral/genética
3.
RNA ; 30(1): 16-25, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37891004

RESUMEN

During viral replication, viruses carrying an RNA genome produce non-standard viral genomes (nsVGs), including copy-back viral genomes (cbVGs) and deletion viral genomes (delVGs), that play a crucial role in regulating viral replication and pathogenesis. Because of their critical roles in determining the outcome of RNA virus infections, the study of nsVGs has flourished in recent years, exposing a need for bioinformatic tools that can accurately identify them within next-generation sequencing data obtained from infected samples. Here, we present our data analysis pipeline, Viral Opensource DVG Key Algorithm 2 (VODKA2), that is optimized to run on a parallel computing environment for fast and accurate detection of nsVGs from large data sets.


Asunto(s)
Algoritmos , Genoma Viral , RNA-Seq , Biología Computacional/métodos , Replicación Viral , ARN Viral/genética
4.
bioRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37292625

RESUMEN

Antiviral responses are often accompanied by translation inhibition and formation of stress granules (SG) in infected cells. However, the triggers for these processes and their role during infection remain subjects of active investigation. Copy-back viral genomes (cbVGs) are the primary inducers of the Mitochondrial Antiviral Signaling (MAVS) pathway and antiviral immunity during Sendai Virus (SeV) and Respiratory Syncytial virus (RSV) infections. The relationship between cbVGs and cellular stress during viral infections is unknown. Here we show that SG form during infections containing high levels of cbVGs, and not during infections with low levels of cbVGs. Moreover, using RNA fluorescent in situ hybridization to differentiate accumulation of standard viral genomes from cbVGs at a single-cell level during infection, we show that SG form exclusively in cells that accumulate high levels of cbVGs. PKR activation is increased during high cbVG infections and, as expected, PKR is necessary to induce virus-induced SG. However, SG form independent of MAVS signaling, demonstrating that cbVGs induce antiviral immunity and SG formation through two independent mechanisms. Furthermore, we show that translation inhibition and SG formation do not affect the overall expression of interferon and interferon stimulated genes during infection, making the stress response dispensable for antiviral immunity. Using live-cell imaging, we show that SG formation is highly dynamic and correlates with a drastic reduction of viral protein expression even in cells infected for several days. Through analysis of active protein translation at a single cell level, we show that infected cells that form SG show inhibition of protein translation. Together, our data reveal a new cbVG-driven mechanism of viral interference where cbVGs induce PKR-mediated translation inhibition and SG formation leading to a reduction in viral protein expression without altering overall antiviral immunity.

5.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163001

RESUMEN

During viral replication, viruses carrying an RNA genome produce non-standard viral genomes (nsVGs), including copy-back viral genomes (cbVGs) and deletion viral genomes (delVGs), that play a crucial role in regulating viral replication and pathogenesis. Because of their critical roles in determining the outcome of RNA virus infections, the study of nsVGs has flourished in recent years exposing a need for bioinformatic tools that can accurately identify them within Next-Generation Sequencing data obtained from infected samples. Here, we present our data analysis pipeline, Viral Opensource DVG Key Algorithm2 (VODKA2), that is optimized to run on a High Performance Computing (HPC) environment for fast and accurate detection of nsVGs from large data sets.

6.
Viruses ; 14(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215962

RESUMEN

Understanding the magnitude of responses to vaccination during the ongoing SARS-CoV-2 pandemic is essential for ultimate mitigation of the disease. Here, we describe a cohort of 102 subjects (70 COVID-19-naïve, 32 COVID-19-experienced) who received two doses of one of the mRNA vaccines (BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)). We document that a single exposure to antigen via infection or vaccination induces a variable antibody response which is affected by age, gender, race, and co-morbidities. In response to a second antigen dose, both COVID-19-naïve and experienced subjects exhibited elevated levels of anti-spike and SARS-CoV-2 neutralizing activity; however, COVID-19-experienced individuals achieved higher antibody levels and neutralization activity as a group. The COVID-19-experienced subjects exhibited no significant increase in antibody or neutralization titer in response to the second vaccine dose (i.e., third antigen exposure). Finally, we found that COVID-19-naïve individuals who received the Moderna vaccine exhibited a more robust boost response to the second vaccine dose (p = 0.004) as compared to the response to Pfizer-BioNTech. Ongoing studies with this cohort will continue to contribute to our understanding of the range and durability of responses to SARS-CoV-2 mRNA vaccines.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Antivirales/sangre , Vacuna BNT162/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Vacunación/estadística & datos numéricos , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Adulto , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , Vacuna BNT162/administración & dosificación , COVID-19/inmunología , Estudios de Cohortes , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad
7.
Virology ; 556: 73-78, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33548599

RESUMEN

The need to stem the current outbreak of SARS-CoV-2 responsible for COVID-19 is driving the search for inhibitors that will block coronavirus replication and pathogenesis. The coronavirus 3C-like protease (3CLpro) encoded in the replicase polyprotein is an attractive target for antiviral drug development because protease activity is required for generating a functional replication complex. Reagents that can be used to screen for protease inhibitors and for identifying the replicase products of SARS-CoV-2 are urgently needed. Here we describe a luminescence-based biosensor assay for evaluating small molecule inhibitors of SARS-CoV-2 3CLpro/main protease. We also document that a polyclonal rabbit antiserum developed against SARS-CoV 3CLpro cross reacts with the highly conserved 3CLpro of SARS-CoV-2. These reagents will facilitate the pre-clinical evaluation of SARS-CoV-2 protease inhibitors.


Asunto(s)
Técnicas Biosensibles/métodos , Proteasas 3C de Coronavirus/metabolismo , Sueros Inmunes/inmunología , Luciferasas/metabolismo , SARS-CoV-2/metabolismo , Animales , Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/inmunología , Reacciones Cruzadas , Luciferasas/genética , Inhibidores de Proteasas/farmacología , Conejos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
8.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188728

RESUMEN

Coronaviruses express a multifunctional papain-like protease, termed papain-like protease 2 (PLP2). PLP2 acts as a protease that cleaves the viral replicase polyprotein and as a deubiquitinating (DUB) enzyme which removes ubiquitin (Ub) moieties from ubiquitin-conjugated proteins. Previous in vitro studies implicated PLP2/DUB activity as a negative regulator of the host interferon (IFN) response, but the role of DUB activity during virus infection was unknown. Here, we used X-ray structure-guided mutagenesis and functional studies to identify amino acid substitutions within the ubiquitin-binding surface of PLP2 that reduced DUB activity without affecting polyprotein processing activity. We engineered a DUB mutation (Asp1772 to Ala) into a murine coronavirus and evaluated the replication and pathogenesis of the DUB mutant virus (DUBmut) in cultured macrophages and in mice. We found that the DUBmut virus replicates similarly to the wild-type (WT) virus in cultured cells, but the DUBmut virus activates an IFN response at earlier times compared to the wild-type virus infection in macrophages, consistent with DUB activity negatively regulating the IFN response. We compared the pathogenesis of the DUBmut virus to that of the wild-type virus and found that the DUBmut-infected mice had a statistically significant reduction (P < 0.05) in viral titer in liver and spleen at day 5 postinfection (d p.i.), although both wild-type and DUBmut virus infections resulted in similar liver pathology. Overall, this study demonstrates that structure-guided mutagenesis aids the identification of critical determinants of the PLP2-ubiquitin complex and that PLP2/DUB activity plays a role as an interferon antagonist in coronavirus pathogenesis.IMPORTANCE Coronaviruses employ a genetic economy by encoding multifunctional proteins that function in viral replication and also modify the host environment to disarm the innate immune response. The coronavirus papain-like protease 2 (PLP2) domain possesses protease activity, which cleaves the viral replicase polyprotein, and also DUB activity (deconjugating ubiquitin/ubiquitin-like molecules from modified substrates) using identical catalytic residues. To separate the DUB activity from the protease activity, we employed a structure-guided mutagenesis approach and identified residues that are important for ubiquitin binding. We found that mutating the ubiquitin-binding residues results in a PLP2 that has reduced DUB activity but retains protease activity. We engineered a recombinant murine coronavirus to express the DUB mutant and showed that the DUB mutant virus activated an earlier type I interferon response in macrophages and exhibited reduced replication in mice. The results of this study demonstrate that PLP2/DUB is an interferon antagonist and a virulence trait of coronaviruses.


Asunto(s)
Infecciones por Coronavirus/virología , Virus de la Hepatitis Murina/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Interacciones Huésped-Patógeno , Interferón Tipo I/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Modelos Moleculares , Virus de la Hepatitis Murina/patogenicidad , Mutagénesis , Conformación Proteica , Relación Estructura-Actividad , Ubiquitinación , Proteínas Virales/química , Virulencia , Replicación Viral
9.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188729

RESUMEN

Coronaviruses (CoVs) encode multiple interferon (IFN) antagonists that modulate the host response to virus replication. Here, we evaluated the host transcriptional response to infection with murine coronaviruses encoding independent mutations in one of two different viral antagonists, the deubiquitinase (DUB) within nonstructural protein 3 or the endoribonuclease (EndoU) within nonstructural protein 15. We used transcriptomics approaches to compare the scope and kinetics of the host response to the wild-type (WT), DUBmut, and EndoUmut viruses in infected macrophages. We found that the EndoUmut virus activates a focused response that predominantly involves type I interferons and interferon-related genes, whereas the WT and DUBmut viruses more broadly stimulate upregulation of over 2,800 genes, including networks associated with activating the unfolded protein response (UPR) and the proinflammatory response associated with viral pathogenesis. This study highlights the role of viral interferon antagonists in shaping the kinetics and magnitude of the host response during virus infection and demonstrates that inactivating a dominant viral antagonist, the coronavirus endoribonuclease, dramatically alters the host response in macrophages.IMPORTANCE Macrophages are an important cell type during coronavirus infections because they "notice" the infection and respond by inducing type I interferons, which limits virus replication. In turn, coronaviruses encode proteins that mitigate the cell's ability to signal an interferon response. Here, we evaluated the host macrophage response to two independent mutant coronaviruses, one with reduced deubiquitinating activity (DUBmut) and the other containing an inactivated endoribonuclease (EndoUmut). We observed a rapid, robust, and focused response to the EndoUmut virus, which was characterized by enhanced expression of interferon and interferon-related genes. In contrast, wild-type virus and the DUBmut virus elicited a more limited interferon response and ultimately activated over 2,800 genes, including players in the unfolded protein response and proinflammatory pathways associated with progression of significant disease. This study reveals that EndoU activity substantially contributes to the ability of coronaviruses to evade the host innate response and to replicate in macrophages.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Coronavirus/fisiología , Endorribonucleasas/metabolismo , Interferones/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Biología Computacional , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Citocinas/metabolismo , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Ratones , Modelos Biológicos , Mutación , ARN Viral , Respuesta de Proteína Desplegada
10.
Proc Natl Acad Sci U S A ; 117(14): 8094-8103, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198201

RESUMEN

Coronaviruses (CoVs) are positive-sense RNA viruses that can emerge from endemic reservoirs and infect zoonotically, causing significant morbidity and mortality. CoVs encode an endoribonuclease designated EndoU that facilitates evasion of host pattern recognition receptor MDA5, but the target of EndoU activity was not known. Here, we report that EndoU cleaves the 5'-polyuridines from negative-sense viral RNA, termed PUN RNA, which is the product of polyA-templated RNA synthesis. Using a virus containing an EndoU catalytic-inactive mutation, we detected a higher abundance of PUN RNA in the cytoplasm compared to wild-type-infected cells. Furthermore, we found that transfecting PUN RNA into cells stimulates a robust, MDA5-dependent interferon response, and that removal of the polyuridine extension on the RNA dampens the response. Overall, the results of this study reveal the PUN RNA to be a CoV MDA5-dependent pathogen-associated molecular pattern (PAMP). We also establish a mechanism for EndoU activity to cleave and limit the accumulation of this PAMP. Since EndoU activity is highly conserved in all CoVs, inhibiting this activity may serve as an approach for therapeutic interventions against existing and emerging CoV infections.


Asunto(s)
Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Coronavirus/metabolismo , Endorribonucleasas/metabolismo , Poli U/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Coronavirus/enzimología , Coronavirus/inmunología , Endorribonucleasas/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Interferones/farmacología , Poli U/química , ARN Viral/genética , ARN Viral/metabolismo , Uridina/química , Células Vero , Proteínas no Estructurales Virales/genética , Replicación Viral/fisiología
11.
J Infect Dis ; 222(1): 158-168, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32052021

RESUMEN

BACKGROUND: Kawasaki disease (KD) is the leading cause of childhood acquired heart disease in developed nations and can result in coronary artery aneurysms and death. Clinical and epidemiologic features implicate an infectious cause but specific antigenic targets of the disease are unknown. Peripheral blood plasmablasts are normally highly clonally diverse but the antibodies they encode are approximately 70% antigen-specific 1-2 weeks after infection. METHODS: We isolated single peripheral blood plasmablasts from children with KD 1-3 weeks after onset and prepared 60 monoclonal antibodies (mAbs). We used the mAbs to identify their target antigens and assessed serologic response among KD patients and controls to specific antigen. RESULTS: Thirty-two mAbs from 9 of 11 patients recognize antigen within intracytoplasmic inclusion bodies in ciliated bronchial epithelial cells of fatal cases. Five of these mAbs, from 3 patients with coronary aneurysms, recognize a specific peptide, which blocks binding to inclusion bodies. Sera from 5/8 KD patients day ≥ 8 after illness onset, compared with 0/17 infant controls (P < .01), recognized the KD peptide antigen. CONCLUSIONS: These results identify a protein epitope targeted by the antibody response to KD and provide a means to elucidate the pathogenesis of this important worldwide pediatric problem.


Asunto(s)
Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Formación de Anticuerpos/genética , Células Sanguíneas/inmunología , Epítopos/inmunología , Síndrome Mucocutáneo Linfonodular/genética , Síndrome Mucocutáneo Linfonodular/inmunología , Femenino , Humanos , Lactante , Masculino , Síndrome Mucocutáneo Linfonodular/epidemiología , Estados Unidos/epidemiología
12.
Proc Natl Acad Sci U S A ; 114(21): E4251-E4260, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484023

RESUMEN

Coronaviruses are positive-sense RNA viruses that generate double-stranded RNA (dsRNA) intermediates during replication, yet evade detection by host innate immune sensors. Here we report that coronavirus nonstructural protein 15 (nsp15), an endoribonuclease, is required for evasion of dsRNA sensors. We evaluated two independent nsp15 mutant mouse coronaviruses, designated N15m1 and N15m3, and found that these viruses replicated poorly and induced rapid cell death in mouse bone marrow-derived macrophages. Infection of macrophages with N15m1, which expresses an unstable nsp15, or N15m3, which expresses a catalysis-deficient nsp15, activated MDA5, PKR, and the OAS/RNase L system, resulting in an early, robust induction of type I IFN, PKR-mediated apoptosis, and RNA degradation. Immunofluorescence imaging of nsp15 mutant virus-infected macrophages revealed significant dispersal of dsRNA early during infection, whereas in WT virus-infected cells, the majority of the dsRNA was associated with replication complexes. The loss of nsp15 activity also resulted in greatly attenuated disease in mice and stimulated a protective immune response. Taken together, our findings demonstrate that coronavirus nsp15 is critical for evasion of host dsRNA sensors in macrophages and reveal that modulating nsp15 stability and activity is a strategy for generating live-attenuated vaccines.


Asunto(s)
Coronavirus/genética , Coronavirus/inmunología , Macrófagos/inmunología , ARN Bicatenario/genética , Proteínas no Estructurales Virales/genética , Animales , Apoptosis/genética , Apoptosis/inmunología , Línea Celular , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Cricetinae , Endorribonucleasas/metabolismo , Activación Enzimática/genética , Inmunidad Innata/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Macrófagos/virología , Ratones , Proteínas no Estructurales Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...