Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 79(2): 881-890, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36308732

RESUMEN

BACKGROUND: The setting and following of phytosanitary standards for weed seeds can lessen the impacts of weeds on agriculture. Standards adopted by seed companies, laboratories and regulators ensure the contamination rates do not exceed some thresholds. Globally sample size standards are set based on the amount needed to obtain a contaminant in a random sample of the seed lot, not detectability. New Zealand requires a 95% confidence that the maximum pest limit of 0.01% of quarantine weed seed contamination is not exceeded in an imported seed lot. We examined 24 samples each containing approximately 150 000 seeds of either perennial ryegrass (12 samples) or white clover seeds (12 samples) that were then spiked with seeds (contaminants) from 12 non-crop species (3-8 seeds of each). We considered factors that may impact detection rates: shape, color, size, and texture relative to the crop, and technician (including a commercial seed laboratory). RESULTS: A linear mixed model fitted to the data indicated significant observer, crop, and seed color, shape, and size effects on detection. Detectability increased by 20% ± 7.7 (± standard error) when seeds had a distinct shape or color (28% ± 8.1), or were larger (23% ± 8.7) rather than smaller, relative to the crop. Commercial laboratory identifications were usually correct at the level of genus, and species for common weeds, but some misidentifications occurred. CONCLUSION: Sample sizes for border inspections should be based on detectability of regulated weed seeds in the crop in combination with weed risk for the crop and location. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Agricultura , Lolium , Semillas , Malezas , Laboratorios , Control de Malezas
2.
PLoS One ; 16(10): e0258685, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34648605

RESUMEN

To estimate the prevalence of herbicide-resistant weeds, 87 wheat and barley farms were randomly surveyed in the Canterbury region of New Zealand. Over 600 weed seed samples from up to 10 mother plants per taxon depending on abundance, were collected immediately prior to harvest (two fields per farm). Some samples provided by agronomists were tested on an ad-hoc basis. Over 40,000 seedlings were grown to the 2-4 leaf stage in glasshouse conditions and sprayed with high priority herbicides for grasses from the three modes-of-action acetyl-CoA carboxylase (ACCase)-inhibitors haloxyfop, fenoxaprop, clodinafop, pinoxaden, clethodim, acetolactate synthase (ALS)-inhibitors iodosulfuron, pyroxsulam, nicosulfuron, and the 5-enolpyruvyl shikimate 3-phosphate synthase (EPSPS)-inhibitor glyphosate. The highest manufacturer recommended label rates were applied for the products registered for use in New Zealand, often higher than the discriminatory rates used in studies elsewhere. Published studies of resistance were rare in New Zealand but we found weeds survived herbicide applications on 42 of the 87 (48%) randomly surveyed farms, while susceptible reference populations died. Resistance was found for ALS-inhibitors on 35 farms (40%) and to ACCase-inhibitors on 20 (23%) farms. The number of farms with resistant weeds (denominator is 87 farms) are reported for ACCase-inhibitors, ALS-inhibitors, and glyphosate respectively as: Avena fatua (9%, 1%, 0% of farms), Bromus catharticus (0%, 2%, 0%), Lolium spp. (17%, 28%, 0%), Phalaris minor (1%, 6%, 0%), and Vulpia bromoides (0%, not tested, 0%). Not all farms had the weeds present, five had no obvious weeds prior to harvest. This survey revealed New Zealand's first documented cases of resistance in P. minor (fenoxaprop, clodinafop, iodosulfuron) and B. catharticus (pyroxsulam). Twelve of the 87 randomly sampled farms (14%) had ALS-inhibitor chlorsulfuron-resistant sow thistles, mostly Sonchus asper but also S. oleraceus. Resistance was confirmed in industry-supplied samples of the grasses Digitaria sanguinalis (nicosulfuron, two maize farms), P. minor (iodosulfuron, one farm), and Lolium spp. (cases included glyphosate, haloxyfop, pinoxaden, iodosulfuron, and pyroxsulam, 9 farms). Industry also supplied Stellaria media samples that were resistant to chlorsulfuron and flumetsulam (ALS-inhibitors) sourced from clover and ryegrass fields from the North and South Island.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Resistencia a los Herbicidas , Herbicidas/farmacología , Hordeum/crecimiento & desarrollo , Malezas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , 3-Fosfoshikimato 1-Carboxiviniltransferasa/antagonistas & inhibidores , Acetolactato Sintasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Granjas , Nueva Zelanda , Proteínas de Plantas/antagonistas & inhibidores , Malezas/clasificación , Malezas/enzimología
3.
Front Plant Sci ; 11: 611622, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569069

RESUMEN

Weeds can be major environmental and economic burdens in New Zealand. Traditional methods of weed control including manual and chemical approaches can be time consuming and costly. Some chemical herbicides may have negative environmental and human health impacts. One of the proposed important steps for providing alternatives to these traditional approaches is the automated identification and mapping of weeds. We used hyperspectral imaging data and machine learning to explore the possibility of fast, accurate and automated discrimination of weeds in pastures where ryegrass and clovers are the sown species. Hyperspectral images from two grasses (Setaria pumila [yellow bristle grass] and Stipa arundinacea [wind grass]) and two broad leaf weed species (Ranunculus acris [giant buttercup] and Cirsium arvense [Californian thistle]) were acquired and pre-processed using the standard normal variate method. We trained three classification models, namely partial least squares-discriminant analysis, support vector machine, and Multilayer Perceptron (MLP) using whole plant averaged (Av) spectra and superpixels (Sp) averaged spectra from each weed sample. All three classification models showed repeatable identification of four weeds using both Av and Sp spectra with a range of overall accuracy of 70-100%. However, MLP based on the Sp method produced the most reliable and robust prediction result (89.1% accuracy). Four significant spectral regions were found as highly informative for characterizing the four weed species and could form the basis for a rapid and efficient methodology for identifying weeds in ryegrass/clover pastures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...