Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 90(6): 2432-2442, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37427535

RESUMEN

PURPOSE: [13 C]Bicarbonate formation from hyperpolarized [1-13 C]pyruvate via pyruvate dehydrogenase, a key regulatory enzyme, represents the cerebral oxidation of pyruvate and the integrity of mitochondrial function. The present study is to characterize the chronology of cerebral mitochondrial metabolism during secondary injury associated with acute traumatic brain injury (TBI) by longitudinally monitoring [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate in rodents. METHODS: Male Wistar rats were randomly assigned to undergo a controlled-cortical impact (CCI, n = 31) or sham surgery (n = 22). Seventeen of the CCI and 9 of the sham rats longitudinally underwent a 1 H/13 C-integrated MR protocol that includes a bolus injection of hyperpolarized [1-13 C]pyruvate at 0 (2 h), 1, 2, 5, and 10 days post-surgery. Separate CCI and sham rats were used for histological validation and enzyme assays. RESULTS: In addition to elevated lactate, we observed significantly reduced bicarbonate production in the injured site. Unlike the immediate appearance of hyperintensity on T2 -weighted MRI, the contrast of bicarbonate signals between the injured region and the contralateral brain peaked at 24 h post-injury, then fully recovered to the normal level at day 10. A subset of TBI rats demonstrated markedly increased bicarbonate in normal-appearing contralateral brain regions post-injury. CONCLUSION: This study demonstrates that aberrant mitochondrial metabolism occurring in acute TBI can be monitored by detecting [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate, suggesting that [13 C]bicarbonate is a sensitive in-vivo biomarker of the secondary injury processes.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Ratas , Masculino , Animales , Ácido Pirúvico/metabolismo , Bicarbonatos/metabolismo , Ratas Wistar , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Mitocondrias/metabolismo , Isótopos de Carbono
3.
Commun Med (Lond) ; 2(1): 49, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603278

RESUMEN

Background: With the rising number of chimeric antigen receptor (CAR) T cell treated patients, it is increasingly important to understand the treatment's impact on patient-reported outcomes (PROs) and, ideally, identify biomarkers of central nervous system (CNS) adverse effects. Methods: The purpose of this exploratory study was to assess short-term PROs and serum kynurenine metabolites for associated neurotoxicity among patients treated in an anti-CD20, anti-CD19 (LV20.19) CAR T cell phase I clinical trial (NCT03019055). Fifteen CAR T treated patients from the parent trial provided serum samples and self-report surveys 15 days before and 14, 28, and 90 days after treatment. Results: Blood kynurenine concentrations increased over time in patients with evidence of neurotoxicity (p = 0.004) and were increased in self-reported depression (r = 0.52, p = 0.002). Depression improved after CAR T infusion (p = 0.035). Elevated 3-hydroxyanthranilic acid (3HAA) concentrations prior to cell infusion were also predictive of neurotoxicity onset (p = 0.031), suggesting it is a biomarker of neurotoxicity following CAR T cell therapy. Conclusions: Elevated levels of kynurenine pathway metabolites among CAR T cell recipients are associated with depressed mood and neurotoxicity. Findings from this exploratory study are preliminary and warrant validation in a larger cohort.


This study examined the impact of chimeric antigen receptor (CAR) T cell therapy­a therapy that gets immune cells to fight cancer by changing them in the lab to find and destroy cancer cells­on blood markers associated with depression, anxiety, pain, fatigue, and poor sleep. Fifteen CAR T cell patients provided blood samples and completed surveys before and three timepoints after treatment. We found that the amount of kynurenine, a normal blood constituent, and related molecules was higher in patients who experienced significant CAR T cell side effects on the brain and in patients reporting more depression. These results identify the excessive elevation of blood constituents related to the mood that may also be associated with depression and brain dysfunction following CAR T. These blood constituents could potentially be used as markers and targeted with interventions to prevent brain dysfunction.

4.
Magn Reson Med ; 87(3): 1136-1149, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687086

RESUMEN

PURPOSE: This study is to investigate time-resolved 13 C MR spectroscopy (MRS) as an alternative to imaging for assessing pyruvate metabolism using hyperpolarized (HP) [1-13 C]pyruvate in the human brain. METHODS: Time-resolved 13 C spectra were acquired from four axial brain slices of healthy human participants (n = 4) after a bolus injection of HP [1-13 C]pyruvate. 13 C MRS with low flip-angle excitations and a multichannel 13 C/1 H dual-frequency radiofrequency (RF) coil were exploited for reliable and unperturbed assessment of HP pyruvate metabolism. Slice-wise areas under the curve (AUCs) of 13 C-metabolites were measured and kinetic analysis was performed to estimate the production rates of lactate and HCO3- . Linear regression analysis between brain volumes and HP signals was performed. Region-focused pyruvate metabolism was estimated using coil-wise 13 C reconstruction. Reproducibility of HP pyruvate exams was presented by performing two consecutive injections with a 45-minutes interval. RESULTS: [1-13 C]Lactate relative to the total 13 C signal (tC) was 0.21-0.24 in all slices. [13 C] HCO3- /tC was 0.065-0.091. Apparent conversion rate constants from pyruvate to lactate and HCO3- were calculated as 0.014-0.018 s-1 and 0.0043-0.0056 s-1 , respectively. Pyruvate/tC and lactate/tC were in moderate linear relationships with fractional gray matter volume within each slice. White matter presented poor linear regression fit with HP signals, and moderate correlations of the fractional cerebrospinal fluid volume with pyruvate/tC and lactate/tC were measured. Measured HP signals were comparable between two consecutive exams with HP [1-13 C]pyruvate. CONCLUSIONS: Dynamic MRS in combination with multichannel RF coils is an affordable and reliable alternative to imaging methods in investigating cerebral metabolism using HP [1-13 C]pyruvate.


Asunto(s)
Imagen por Resonancia Magnética , Ácido Pirúvico , Isótopos de Carbono , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados
5.
ACS Chem Neurosci ; 12(15): 2820-2828, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34291630

RESUMEN

Transient disruption of the blood-brain barrier (BBB) with focused ultrasound (FUS) is an emerging clinical method to facilitate targeted drug delivery to the brain. The focal noninvasive disruption of the BBB can be applied to promote the local delivery of hyperpolarized substrates. In this study, we investigated the effects of FUS on imaging brain metabolism using two hyperpolarized 13C-labeled substrates in rodents: [1-13C]pyruvate and [1-13C]glycerate. The BBB is a rate-limiting factor for pyruvate delivery to the brain, and glycerate minimally passes through the BBB. First, cerebral imaging with hyperpolarized [1-13C]pyruvate resulted in an increase in total 13C signals (p = 0.05) after disrupting the BBB with FUS. Significantly higher levels of both [1-13C]lactate (lactate/total 13C signals, p = 0.01) and [13C]bicarbonate (p = 0.008) were detected in the FUS-applied brain region as compared to the contralateral FUS-unaffected normal-appearing brain region. The application of FUS without opening the BBB in a separate group of rodents resulted in comparable lactate and bicarbonate productions between the FUS-applied and the contralateral brain regions. Second, 13C imaging with hyperpolarized [1-13C]glycerate after opening the BBB showed increased [1-13C]glycerate delivery to the FUS-applied region (p = 0.04) relative to the contralateral side, and [1-13C]lactate production was consistently detected from the FUS-applied region. Our findings suggest that FUS accelerates the delivery of hyperpolarized molecules across the BBB and provides enhanced sensitivity to detect metabolic products in the brain; therefore, hyperpolarized 13C imaging with FUS may provide new opportunities to study cerebral metabolic pathways as well as various neurological pathologies.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Transporte Biológico , Encéfalo/diagnóstico por imagen , Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética , Ácido Pirúvico , Ratas , Ratas Sprague-Dawley
6.
Magn Reson Med ; 86(3): 1494-1504, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33821504

RESUMEN

PURPOSE: Noninvasive imaging with hyperpolarized (HP) pyruvate can capture in vivo cardiac metabolism. For proper quantification of the metabolites and optimization of imaging parameters, understanding MR characteristics such as T2∗ s of the HP signals is critical. This study is to measure in vivo cardiac T2∗ s of HP [1-13 C]pyruvate and the products in rodents and humans. METHODS: A dynamic 13 C multi-echo spiral imaging sequence that acquires [13 C]bicarbonate, [1-13 C]lactate, and [1-13 C]pyruvate images in an interleaved manner was implemented for a clinical 3 Tesla system. T2∗ of each metabolite was calculated from the multi-echo images by fitting the signal decay of each region of interest mono-exponentially. The performance of measuring T2∗ using the sequence was first validated using a 13 C phantom and then with rodents following a bolus injection of HP [1-13 C]pyruvate. In humans, T2∗ of each metabolite was calculated for left ventricle, right ventricle, and myocardium. RESULTS: Cardiac T2∗ s of HP [1-13 C]pyruvate, [1-13 C]lactate, and [13 C]bicarbonate in rodents were measured as 24.9 ± 5.0, 16.4 ± 4.7, and 16.9 ± 3.4 ms, respectively. In humans, T2∗ of [1-13 C]pyruvate was 108.7 ± 22.6 ms in left ventricle and 129.4 ± 8.9 ms in right ventricle. T2∗ of [1-13 C]lactate was 40.9 ± 8.3, 44.2 ± 5.5, and 43.7 ± 9.0 ms in left ventricle, right ventricle, and myocardium, respectively. T2∗ of [13 C]bicarbonate in myocardium was 64.4 ± 2.5 ms. The measurements were reproducible and consistent over time after the pyruvate injection. CONCLUSION: The proposed metabolite-selective multi-echo spiral imaging sequence reliably measures in vivo cardiac T2∗ s of HP [1-13 C]pyruvate and products.


Asunto(s)
Imagen por Resonancia Magnética , Ácido Pirúvico , Isótopos de Carbono , Corazón/diagnóstico por imagen , Fantasmas de Imagen
7.
Res Policy ; 50(1): 104069, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33390628

RESUMEN

Synthesis centers are a form of scientific organization that catalyzes and supports research that integrates diverse theories, methods and data across spatial or temporal scales to increase the generality, parsimony, applicability, or empirical soundness of scientific explanations. Synthesis working groups are a distinctive form of scientific collaboration that produce consequential, high-impact publications. But no one has asked if synthesis working groups synthesize: are their publications substantially more diverse than others, and if so, in what ways and with what effect? We investigate these questions by using Latent Dirichlet Analysis to compare the topical diversity of papers published by synthesis center collaborations with that of papers in a reference corpus. Topical diversity was operationalized and measured in several ways, both to reflect aggregate diversity and to emphasize particular aspects of diversity (such as variety, evenness, and balance). Synthesis center publications have greater topical variety and evenness, but less disparity, than do papers in the reference corpus. The influence of synthesis center origins on aspects of diversity is only partly mediated by the size and heterogeneity of collaborations: when taking into account the numbers of authors, distinct institutions, and references, synthesis center origins retain a significant direct effect on diversity measures. Controlling for the size and heterogeneity of collaborative groups, synthesis center origins and diversity measures significantly influence the visibility of publications, as indicated by citation measures. We conclude by suggesting social processes within collaborations that might account for the observed effects, by inviting further exploration of what this novel textual analysis approach might reveal about interdisciplinary research, and by offering some practical implications of our results.

8.
Anal Sens ; 1(4): 156-160, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35669533

RESUMEN

The TCA cycle is a central metabolic pathway for energy production and biosynthesis. A major control point of metabolic flux through the cycle is the decarboxylation of 2-ketoglutarate by the TCA cycle enzyme 2-ketoglutarate dehydrogenase (2-KGDH). In this project, we developed 13C labeled 2-ketoglutarate derivatives to monitor 2-KGDH activity in vivo. 13C NMR analysis of liver extracts revealed that uniformly 13C labeled 2-ketogutarate, in its cell permeable ester form, was rapidly taken up and hydrolyzed in liver and underwent extensive metabolism to produce labeled glutamate, succinate, lactate and other metabolites. Diethyl [1,2-13C2]-2-ketoglutarate was successfully polarized by dynamic nuclear polarization and within seconds after injection into rats, the probe produced hyperpolarized [13C]bicarbonate in the liver reflecting flux through the TCA cycle. These experiments demonstrate that this tracer offers the possibility of directly monitoring flux through 2-KGDH in vivo.

9.
Anal Sens ; 1(4): 196-202, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35693130

RESUMEN

The interplay between glycolysis and gluconeogenesis is central to carbohydrate metabolism. Here, we describe novel methods to assess carbohydrate metabolism using [13C]-probes derived from glycerate, a molecule whose metabolic fate in mammals remains underexplored. Isotope-based studies were conducted via NMR and mass spectrometry analyses of freeze-clamped liver tissue extracts after [2,3-13C2]glycerate infusion. The ex vivo investigations were correlated with in vivo measurements using hyperpolarized [1-13C]glycerate. Application of [13C]glycerate to N-nitrosodiethylamine (DEN)-treated rats provided further assessments of intermediary carbohydrate metabolism in hepatocellular carcinoma. This method afforded direct analyses of control versus DEN tissues, and altered ratios of 13C metabolic products as well as unique glycolysis intermediates were observed in the DEN liver/tumor. Isotopomer studies showed increased glycerate uptake and altered carbohydrate metabolism in the DEN rats.

10.
Magn Reson Med ; 85(3): 1175-1182, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32936474

RESUMEN

PURPOSE: To evaluate the utility of hyperpolarized [1-13 C]-l-lactate to detect hepatic pyruvate carboxylase activity in vivo under fed and fasted conditions. METHODS: [1-13 C]-labeled sodium L-lactate was polarized using a dynamic nuclear polarizer. Polarization level and the T1 were measured in vitro in a 3 Telsa MR scanner. Two groups of healthy rats (fasted vs. fed) were prepared for in vivo studies. Each rat was anesthetized and intravenously injected with 60-mM hyperpolarized [1-13 C]-l-lactate, immediately followed by dynamic acquisition of 13 C (carbon-13) MR spectra from the liver at 3 Tesla. The dosage-dependence of the 13 C-products was also investigated by performing another injection of an equal volume of 30-mM hyperpolarized [1-13 C]-l-lactate. RESULTS: T1 and liquid polarization level of [1-13 C]-l-lactate were estimated as 67.8 s and 40.0%, respectively. [1-13 C]pyruvate and [1-13 C]alanine, [13 C]bicarbonate ( HCO3- ) and [1-13 C]aspartate were produced from hyperpolarized [1-13 C]-l-lactate in rat liver. Smaller HCO3- and larger aspartate were measured in the fed group compared to the fasted group. Pyruvate and alanine production were increased in proportion to the lactate concentration, whereas the amount of HCO3- and aspartate production was consistent between 30-mM and 60-mM lactate injections. CONCLUSION: This study demonstrates that a unique biomarker of pyruvate carboxylase flux, the appearance of [1-13 C]aspartate from [1-13 C]-l-lactate, is sensitive to nutritional state and may be monitored in vivo at 3 Tesla. Because [13 C] HCO3- is largely produced by pyruvate dehydrogenase flux, these results suggest that the ratio of [1-13 C]aspartate and [13 C] HCO3- (aspartate/ HCO3- ) reflects the saturable pyruvate carboxylase/pyruvate dehydrogenase enzyme activities.


Asunto(s)
Ácido Láctico , Piruvato Carboxilasa , Animales , Isótopos de Carbono , Hígado/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Ácido Pirúvico , Ratas
11.
iScience ; 23(12): 101885, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33344923

RESUMEN

Traumatic brain injury (TBI) involves complex secondary injury processes following the primary injury. The secondary injury is often associated with rapid metabolic shifts and impaired brain function immediately after the initial tissue damage. Magnetic resonance spectroscopic imaging (MRSI) coupled with hyperpolarization of 13C-labeled substrates provides a unique opportunity to map the metabolic changes in the brain after traumatic injury in real-time without invasive procedures. In this report, we investigated two patients with acute mild TBI (Glasgow coma scale 15) but no anatomical brain injury or hemorrhage. Patients were imaged with hyperpolarized [1-13C]pyruvate MRSI 1 or 6 days after head trauma. Both patients showed significantly reduced bicarbonate (HCO3 -) production, and one showed hyperintense lactate production at the injured sites. This study reports the feasibility of imaging altered metabolism using hyperpolarized pyruvate in patients with TBI, demonstrating the translatability and sensitivity of the technology to cerebral metabolic changes after mild TBI.

12.
Anal Chem ; 92(17): 11681-11686, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786486

RESUMEN

Tissue pH is tightly regulated in vivo, being a sensitive physiological biomarker. Advent of dissolution dynamic nuclear polarization (DNP) and its translation to humans stimulated development of pH-sensitive agents. However, requirements of DNP probes such as biocompatibility, signal sensitivity, and spin-lattice relaxation time (T1) complicate in vivo translation of the agents. Here, we developed a 13C-labeled alanine derivative, [1-13C]-l-alanine ethyl ester, as a viable DNP probe whose chemical shift is sensitive to the physiological pH range, and demonstrated the feasibility in phantoms and rat livers in vivo. Alanine ethyl ester readily crosses cell membrane while simultaneously assessing extracellular and intracellular pH in vivo. Following cell transport, [1-13C]-l-alanine ethyl ester is instantaneously hydrolyzed to [1-13C]-l-alanine, and subsequently metabolized to [1-13C]lactate and [13C]bicarbonate. The pH-insensitive alanine resonance was used as a reference.


Asunto(s)
Alanina/metabolismo , Ésteres/metabolismo , Animales , Concentración de Iones de Hidrógeno , Masculino , Modelos Animales , Ratas , Ratas Wistar
13.
Sci Rep ; 9(1): 340, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674979

RESUMEN

Altered branched-chain amino acids (BCAAs) metabolism is a distinctive feature of various cancers and plays an important role in sustaining tumor proliferation and aggressiveness. Despite the therapeutic and diagnostic potentials, the role of BCAA metabolism in cancer and the activities of associated enzymes remain unclear. Due to its pivotal role in BCAA metabolism and rapid cellular transport, hyperpolarized 13C-labeled α-ketoisocaproate (KIC), the α-keto acid corresponding to leucine, can assess both BCAA aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase complex (BCKDC) activities via production of [1-13C]leucine or 13CO2 (and thus H13CO3-), respectively. Here, we investigated BCAA metabolism of F98 rat glioma model in vivo using hyperpolarized 13C-KIC. In tumor regions, we observed a decrease in 13C-leucine production from injected hyperpolarized 13C-KIC via BCAT compared to the contralateral normal-appearing brain, and an increase in H13CO3-, a catabolic product of KIC through the mitochondrial BCKDC. A parallel ex vivo 13C NMR isotopomer analysis following steady-state infusion of [U-13C]leucine to glioma-bearing rats verified the increased oxidation of leucine in glioma tissue. Both the in vivo hyperpolarized KIC imaging and the leucine infusion study indicate that KIC catabolism is upregulated through BCAT/BCKDC and further oxidized via the citric acid cycle in F98 glioma.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Glioblastoma/patología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Histocitoquímica , Marcaje Isotópico , Leucina/metabolismo , Imagen por Resonancia Magnética , Trasplante de Neoplasias , Oxidación-Reducción , Ratas
14.
Dev Cogn Neurosci ; 26: 52-61, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28521247

RESUMEN

Potential long term effects on brain development are a concern when drugs are used to treat depression and anxiety in childhood. In this study, male juvenile rhesus monkeys (three-four years of age) were dosed with fluoxetine or vehicle (N=16/group) for two years. Histomorphometric examination of cortical dendritic spines conducted after euthanasia at one year postdosing (N=8/group) suggested a trend toward greater dendritic spine synapse density in prefrontal cortex of the fluoxetine-treated monkeys. During dosing, subjects were trained for automated cognitive testing, and evaluated with a test of sustained attention. After dosing was discontinued, sustained attention, recognition memory and cognitive flexibility were evaluated. Sustained attention was affected by fluoxetine, both during and after dosing, as indexed by omission errors. Response accuracy was not affected by fluoxetine in post-dosing recognition memory and cognitive flexibility tests, but formerly fluoxetine-treated monkeys compared to vehicle controls had more missed trial initiations and choices during testing. Drug treatment also interacted with genetic and environmental variables: MAOA genotype (high- and low transcription rate polymorphisms) and testing location (upper or lower tier of cages). Altered development of top-down cortical regulation of effortful attention may be relevant to this pattern of cognitive test performance after juvenile fluoxetine treatment.


Asunto(s)
Cognición/efectos de los fármacos , Fluoxetina/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Animales , Fluoxetina/administración & dosificación , Fluoxetina/farmacología , Macaca mulatta , Masculino , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
15.
Toxicol Sci ; 151(2): 286-301, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26969370

RESUMEN

US EPA's Toxicity Forecaster (ToxCastTM) is a tool with potential use in evaluating safer consumer products, conducting chemical alternatives analyses, prioritizing chemicals for exposure monitoring, and ultimately performing screening-level risk assessments. As a case study exploring a potential use of ToxCast, we evaluated ToxCast results for ortho-phthalates focused on the well-established toxicological endpoints of some members of this class. We compared molecular perturbations measured in ToxCast assays with the known apical toxicity endpoints of o-phthalates reported in the open literature to broadly reflect on the predictive capability of the high-throughput screening (HTS) assays. We grouped the ToxCast assays into defined sets to examine o-phthalate activity and potency. This study revealed several links between key molecular events assayed in vitro and chemical-specific hazard traits. In general, parent o-phthalates are more active than their monoester metabolites. The medium-chain length o-phthalate group is also more active than other o-phthalate groups, as supported by Toxicological Priority Index ranking and statistical methods. Some HTS assay results correlated with in vivo findings, but others did not. For example, there was a notable lack of assay activity to explain the known male reproductive toxicity of these compounds. Ultimately, HTS data resources such as ToxCast may inform us of sensitive upstream toxicity endpoints and may assist in the rapid identification of environmental chemical hazards for screening and prioritization. However, this case study shows that the absence of positive results in ToxCast in vitro assays cannot be interpreted as absence of related in vivo toxicity, and limited biological coverage by the assays remains a concern.


Asunto(s)
Bases de Datos Factuales , Disruptores Endocrinos/toxicidad , Ácidos Ftálicos/toxicidad , Plastificantes/toxicidad , Animales , Disruptores Endocrinos/química , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Estructura Molecular , Ácidos Ftálicos/química , Plastificantes/química , Reproducción/efectos de los fármacos , Medición de Riesgo , Relación Estructura-Actividad , Pruebas de Toxicidad
16.
PLoS One ; 8(12): e80922, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349022

RESUMEN

In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA). ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs). The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH), the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.


Asunto(s)
Eicosanoides/uso terapéutico , Epóxido Hidrolasas/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/enzimología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Masculino , Ratones
17.
Sci Eng Ethics ; 17(4): 823-38, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21993903

RESUMEN

Engaged scholarship is an intellectual movement sweeping across higher education, not only in the social and behavioral sciences but also in fields of natural science and engineering. It is predicated on the idea that major advances in knowledge will transpire when scholars, while pursuing their research interests, also consider addressing the core problems confronting society. For a workable engaged agenda in science and technology studies, one that informs scholarship as well as shapes practice and policy, the traditional terms of engagement must be renegotiated to be more open and mutual than has historically characterized the nature of inquiry in this field. At the same time, it is essential to protect individual privacy and preserve government confidentiality. Yet there is a scientific possibility for and benefit to introducing more collaborative and deliberative research approaches between scholar and subject in ways that will not violate these first-order ethics. To make the case, this article discusses the possibilities and perils of engaged science and technology scholarship by drawing on our own recent experiences to conduct and apply STS research while embedded in the National Science Foundation. Brief accounts of these experiences reveal the opportunities as well as the challenges of engaged scholarship. They also provide lessons for those fellow travelers who might follow the authors to this or other like host organizations with ambitions of increasing fundamental knowledge about and applying research to the policies, programs, and decisions of the scientific enterprise.


Asunto(s)
Participación de la Comunidad , Conducta Cooperativa , Ética en Investigación , Financiación Gubernamental , Ciencia , Ciencias Sociales , Tecnología , Ciencias de la Conducta , Confidencialidad , Ingeniería , Fundaciones , Humanos , Conocimiento , Disciplinas de las Ciencias Naturales , Privacidad , Estados Unidos
18.
Sci Eng Ethics ; 8(2): 211-4, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12092492

RESUMEN

Stimulated by Kenneth Pimple's "Six Domains of Research Ethic", this paper examines four aspects of the responsible conduct of research and scientists' social responsibilities. I argue that scholars and decision-makers concerned with the responsible conduct of research should take notice of the rapidly growing body of scholarship on the social organization of science and the behavior of scientists, integrating that work with ethical principles. Of particular concern are the increasing heterogeneity and interdisciplinary of research, the ambivalences in the practice of peer review, the social tensions of research life, and the heightened concern for social and economic returns from federal research investments. In all, the paper echoes and develops Pimple's call for integrative thinking about the responsible conduct of research.


Asunto(s)
Ética Profesional , Investigación/normas , Responsabilidad Social , Humanos , Revisión por Pares/métodos , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...