Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Oral Microbiol ; 36(6): 316-326, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34569151

RESUMEN

The main etiological agent of periodontitis is the anaerobic bacterium Porphyromonas gingivalis. Virulence of this pathogen is controlled by various mechanisms and executed by major virulence factors including the gingipain proteases, peptidylarginine deiminase (PPAD), and RagB, an outer membrane macromolecular transport component. Although the structures and functions of these proteins are well characterized, little is known about their posttranslational maturation. Here, we determined the phosphoproteome of P. gingivalis in which phosphorylated tyrosine residues constitute over 80% of all phosphoresidues. Multiple phosphotyrosines were found in gingipains, PPAD, and RagB. Although mutation of phosphorylated residues in PPAD and RagB had no effect on secretion or activity, site-directed mutagenesis showed that phosphorylation in hemagglutinin/adhesin domains of RgpA and Kgp, and in the catalytic domain of RgpB, had a strong influence on secretion, processing, and enzymatic activity. Moreover, preventing phosphorylation of one gingipain influenced the others, suggesting multiple phosphorylation-dependent pathways of gingipain maturation in P. gingivalis. Various candidate kinases including Ptk1 BY kinase and ubiquitous bacterial kinase 1 (UbK1) may be involved, but their contribution to gingipain processing and activation remains to be confirmed.


Asunto(s)
Porphyromonas gingivalis , Factores de Virulencia , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Composición de Base , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Hemaglutininas/genética , Fosforilación , Filogenia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Factores de Virulencia/genética
2.
ISME J ; 12(2): 508-519, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29053148

RESUMEN

High representation by ammonia-oxidizing archaea (AOA) in marine systems is consistent with their high affinity for ammonia, efficient carbon fixation, and copper (Cu)-centric respiratory system. However, little is known about their response to nutrient stress. We therefore used global transcriptional and proteomic analyses to characterize the response of a model AOA, Nitrosopumilus maritimus SCM1, to ammonia starvation, Cu limitation and Cu excess. Most predicted protein-coding genes were transcribed in exponentially growing cells, and of ~74% detected in the proteome, ~6% were modified by N-terminal acetylation. The general response to ammonia starvation and Cu stress was downregulation of genes for energy generation and biosynthesis. Cells rapidly depleted transcripts for the A and B subunits of ammonia monooxygenase (AMO) in response to ammonia starvation, yet retained relatively high levels of transcripts for the C subunit. Thus, similar to ammonia-oxidizing bacteria, selective retention of amoC transcripts during starvation appears important for subsequent recovery, and also suggests that AMO subunit transcript ratios could be used to assess the physiological status of marine populations. Unexpectedly, cobalamin biosynthesis was upregulated in response to both ammonia starvation and Cu stress, indicating the importance of this cofactor in retaining functional integrity during times of stress.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Estrés Fisiológico , Archaea/efectos de los fármacos , Archaea/enzimología , Archaea/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Ciclo del Carbono , Cobre/toxicidad , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteómica , Estrés Fisiológico/genética , Transcriptoma , Vitamina B 12/biosíntesis , Microbiología del Agua
3.
Nat Microbiol ; 2(11): 1493-1499, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28924191

RESUMEN

Many human infections are polymicrobial in origin, and interactions among community inhabitants shape colonization patterns and pathogenic potential 1 . Periodontitis, which is the sixth most prevalent infectious disease worldwide 2 , ensues from the action of dysbiotic polymicrobial communities 3 . The keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii interact to form communities in vitro and exhibit increased fitness in vivo 3,4 . The mechanistic basis of this polymicrobial synergy, however, has not been fully elucidated. Here we show that streptococcal 4-aminobenzoate/para-amino benzoic acid (pABA) is required for maximal accumulation of P. gingivalis in dual-species communities. Metabolomic and proteomic data showed that exogenous pABA is used for folate biosynthesis, and leads to decreased stress and elevated expression of fimbrial adhesins. Moreover, pABA increased the colonization and survival of P. gingivalis in a murine oral infection model. However, pABA also caused a reduction in virulence in vivo and suppressed extracellular polysaccharide production by P. gingivalis. Collectively, these data reveal a multidimensional aspect to P. gingivalis-S. gordonii interactions and establish pABA as a critical cue produced by a partner species that enhances the fitness of P. gingivalis while diminishing its virulence.


Asunto(s)
Infecciones por Bacteroidaceae/microbiología , Coinfección/microbiología , Interacciones Microbianas , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidad , Infecciones Estreptocócicas/microbiología , Streptococcus gordonii/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Ácido 4-Aminobenzoico/farmacología , Adhesinas Bacterianas/metabolismo , Animales , Adhesión Bacteriana , Biopelículas , Coinfección/metabolismo , Modelos Animales de Enfermedad , Disbiosis , Femenino , Humanos , Metabolómica , Ratones , Ratones Endogámicos BALB C , Periodontitis/microbiología , Porphyromonas gingivalis/efectos de los fármacos , Porphyromonas gingivalis/crecimiento & desarrollo , Proteómica , Streptococcus gordonii/efectos de los fármacos , Streptococcus gordonii/genética , Streptococcus gordonii/patogenicidad , Virulencia , para-Aminobenzoatos/metabolismo , para-Aminobenzoatos/farmacología
4.
Front Microbiol ; 8: 261, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293219

RESUMEN

Many bacterial infections involve polymicrobial communities in which constituent organisms are synergistically pathogenic. Periodontitis, a commonly occurring chronic inflammatory disorder, is induced by multispecies bacterial communities. The periodontal keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii exhibit polymicrobial synergy in animal models of disease. Mechanisms of co-adhesion and community formation by P. gingivalis and S. gordonii are well-established; however, little is known regarding the basis for increased pathogenicity. In this study we used time-coursed RNA-Seq to comprehensively and quantitatively examine the dynamic transcriptional landscape of P. gingivalis in a model consortium with S. gordonii. Genes encoding a number of potential virulence determinants had higher relative mRNA levels in the context of dual species model communities than P. gingivalis alone, including adhesins, the Type IX secretion apparatus, and tetratricopeptide repeat (TPR) motif proteins. In contrast, genes encoding conjugation systems and many of the stress responses showed lower levels of expression in P. gingivalis. A notable exception to reduced abundance of stress response transcripts was the genes encoding components of the oxidative stress-related OxyR regulon, indicating an adaptation of P. gingivalis to detoxify peroxide produced by the streptococcus. Collectively, the results are consistent with evolutionary adaptation of P. gingivalis to a polymicrobial oral environment, one outcome of which is increased pathogenic potential.

5.
Microbiologyopen ; 3(5): 729-51, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25155235

RESUMEN

Fusobacterium nucleatum is a common oral organism that can provide adhesive and metabolic support to developing periodontal bacterial communities. It is within the context of these communities that disease occurs. We have previously reported whole cell proteomics analyses of Porphyromonas gingivalis and Streptococcus gordonii in early-stage communities with each other and with F. nucleatum, modeled using 18 h pellets. Here, we report the adaptation of F. nucleatum to the same experimental conditions as measured by differential protein expression. About 1210 F. nucleatum proteins were detected in single species F. nucleatum control samples, 1192 in communities with P. gingivalis, 1224 with S. gordonii, and 1135 with all three species. Quantitative comparisons among the proteomes revealed important changes in all mixed samples with distinct responses to P. gingivalis or S. gordonii alone and in combination. The results were inspected manually and an ontology analysis conducted using DAVID (Database for annotation, visualization, and integrated discovery). Extensive changes were detected in energy metabolism. All multispecies comparisons showed reductions in amino acid fermentation and a shift toward butanoate as a metabolic byproduct, although the two organism model community with S. gordonii showed increases in alanine, threonine, methionine, and cysteine pathways, and in the three species samples there were increases in lysine and methionine. The communities with P. gingivalis or all three organisms showed reduced glycolysis proteins, but F. nucleatum paired with S. gordonii displayed increased glycolysis/gluconeogenesis proteins. The S. gordonii containing two organism model also showed increases in the ethanolamine pathway while the three species sample showed decreases relative to the F. nucleatum single organism control. All of the nascent model communities displayed reduced translation, lipopolysaccharide, and cell wall biosynthesis, DNA replication and DNA repair.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Fusobacterium/microbiología , Fusobacterium nucleatum/genética , Enfermedades de la Boca/microbiología , Proteómica , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biodiversidad , Fusobacterium nucleatum/clasificación , Fusobacterium nucleatum/aislamiento & purificación , Fusobacterium nucleatum/metabolismo , Humanos , Espectrometría de Masas , Modelos Biológicos , Datos de Secuencia Molecular , Boca/microbiología
6.
Microbiologyopen ; 3(3): 383-94, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24811194

RESUMEN

Interspecies communication between Porphyromonas gingivalis and Streptococcus gordonii underlies the development of synergistic dual species communities. Contact with S. gordonii initiates signal transduction within P. gingivalis that is based on protein tyrosine (de)phosphorylation. In this study, we characterize a bacterial tyrosine (BY) kinase (designated Ptk1) of P. gingivalis and demonstrate its involvement in interspecies signaling. Ptk1 can utilize ATP for autophosphorylation and is dephosphorylated by the P. gingivalis tyrosine phosphatase, Ltp1. Community development with S. gordonii is severely abrogated in a ptk1 mutant of P. gingivalis, indicating that tyrosine kinase activity is required for maximal polymicrobial synergy. Ptk1 controls the levels of the transcriptional regulator CdhR and the fimbrial adhesin Mfa1 which mediates binding to S. gordonii. The ptk1 gene is in an operon with two genes involved in exopolysaccharide synthesis, and similar to other BY kinases, Ptk1 is necessary for exopolysaccharide production in P. gingivalis. Ptk1 can phosphorylate the capsule related proteins PGN_0224, a UDP-acetyl-mannosamine dehydrogenase, and PGN_0613, a UDP-glucose dehydrogenase, in P. gingivalis. Knockout of ptk1 in an encapsulated strain of P. gingivalis resulted in loss of capsule production. Collectively these results demonstrate that the P. gingivalis Ptk1 BY kinase regulates interspecies communication and controls heterotypic community development with S. gordonii through adjusting the levels of the Mfa1 adhesin and exopolysaccharide.


Asunto(s)
Interacciones Microbianas , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/crecimiento & desarrollo , Proteínas Tirosina Quinasas/metabolismo , Streptococcus gordonii/crecimiento & desarrollo , Adenosina Trifosfato/metabolismo , Adhesión Bacteriana , Cápsulas Bacterianas/metabolismo , Eliminación de Gen , Fosforilación , Porphyromonas gingivalis/genética , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/genética , Transducción de Señal
7.
Genome Res ; 23(11): 1839-51, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24089473

RESUMEN

Methanogens catalyze the critical methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and noncoding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 58 different steady-state and time-course experiments that were performed in chemostats or batch cultures under a spectrum of environmental perturbations that modulated methanogenesis. Analyses of the EGRIN model have revealed novel components of methanogenesis that included at least three additional protein-coding genes of previously unknown function as well as one noncoding RNA. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to intercoordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel transcription factors in the regulation of phosphate-dependent repression of formate dehydrogenase-a key enzyme in the methanogenesis pathway. The EGRIN model demonstrates regulatory affiliations within methanogenesis as well as between methanogenesis and other cellular functions.


Asunto(s)
Genes Arqueales , Redes y Vías Metabólicas/genética , Metano/biosíntesis , Methanococcus/enzimología , Methanococcus/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Formiato Deshidrogenasas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica Arqueal , Interacción Gen-Ambiente , Hidrógeno/metabolismo , Methanococcus/metabolismo , Modelos Genéticos , Eliminación de Secuencia
8.
Microbiology (Reading) ; 159(Pt 10): 2162-2168, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23842468

RESUMEN

Due to their adjacent location in the genomes of Desulfovibrio species and their potential for formation of an electron transfer pathway in sulfate-reducing prokaryotes, adenosyl phosphosulfate (APS) reductase (Apr) and quinone-interacting membrane-bound oxidoreductase (Qmo) have been thought to interact together during the reduction of APS. This interaction was recently verified in Desulfovibrio desulfuricans. Membrane proteins of Desulfovibrio vulgaris Hildenborough ΔqmoABCD JW9021, a deletion mutant, were compared to the parent strain using blue-native PAGE to determine whether Qmo formed a complex with Apr or other proteins. In the parent strain of D. vulgaris, a unique band was observed that contained all four Qmo subunits, and another band contained three subunits of Qmo, as well as subunits of AprA and AprB. Similar results were observed with bands excised from membrane preparations of Desulfovibrio alaskensis strain G20. These results are in support of the formation of a physical complex between the two proteins; a result that was further confirmed by the co-purification of QmoA/B and AprA/B from affinity-tagged D. vulgaris Hildenborough strains (AprA, QmoA and QmoB) regardless of which subunit had been tagged. This provides clear evidence for the presence of a Qmo-Apr complex that is at least partially stable in protein extracts of D. vulgaris and D. alaskensis.


Asunto(s)
Desulfovibrio/química , Desulfovibrio/enzimología , Proteínas de la Membrana/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Multimerización de Proteína , Eliminación de Gen
9.
BMC Microbiol ; 12: 211, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22989070

RESUMEN

BACKGROUND: Streptococcus gordonii is one of several species that can initiate the formation of oral biofilms that develop into the complex multispecies microbial communities referred to as dental plaque. It is in the context of dental plaque that periodontal pathogens such as Porphyromonas gingivalis cause disease. We have previously reported a whole cell quantitative proteomics investigation of P. gingivalis in a model dental plaque community of S. gordonii, P. gingivalis, and Fusobacterium nucleatum. Here we report the adaptation of S. gordonii to the same model. RESULTS: 1122 S. gordonii proteins were detected in S. gordonii control samples, 915 in communities with F. nucleatum, 849 with P. gingivalis, and 649 with all three organisms. Quantitative comparisons showed extensive proteome changes in association with F. nucleatum or P. gingivalis individually or both P. gingivalis and F. nucleatum together. The changes were species specific, though the P. gingivalis interaction may be dominant, indicated by large differences between the proteomes with F. nucleatum or P. gingivalis but limited changes between communities with P. gingivalis or both P. gingivalis and F. nucleatum. The results were inspected manually and an ontology analysis conducted using DAVID. Extensive changes were seen in nutrition pathways with increases in energy metabolism and changes in the resulting byproducts, while the acid and sugar repressed PTS (phosphoenolpyruvate dependent phosphotransferase system) sugar transport systems showed decreases. These results were seen across all the multispecies samples, though with different profiles according to the partner species. F. nucleatum association decreased proteins for the metabolic end products acetate and ethanol but increased lactate, the primary source of acidity from streptococcal cultures. P. gingivalis containing samples had a reduction in levels of proteins for ethanol and formate but increased proteins for both acetate and lactate production. The communities also showed increases in exopolysaccharide synthesis, amino acid biosynthesis, and oxidative stress protection and decreases in adhesion and transporter proteins. CONCLUSION: This study showed that S. gordonii demonstrates species specific responses during interactions with F. nucleatum or P. gingivalis. Extensive changes were seen in energy metabolism and byproduct production implicating nutrient transfer as an important community interaction.


Asunto(s)
Proteínas Bacterianas/análisis , Placa Dental/microbiología , Ecosistema , Proteoma/análisis , Streptococcus gordonii/química , Streptococcus gordonii/crecimiento & desarrollo , Fusobacterium nucleatum/crecimiento & desarrollo , Humanos , Interacciones Microbianas , Modelos Biológicos , Porphyromonas gingivalis/crecimiento & desarrollo
10.
Artículo en Inglés | MEDLINE | ID: mdl-22919670

RESUMEN

Porphyromonas gingivalis is a major etiological agent in chronic and aggressive forms of periodontal disease. The organism is an asaccharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput sequencing technologies provide the opportunity to relate functional genomics to basic biology. In this study we report qualitative and quantitative RNA-Seq analysis of the transcriptome of P. gingivalis. We have also applied RNA-Seq to the transcriptome of a ΔluxS mutant of P. gingivalis deficient in AI-2-mediated bacterial communication. The transcriptome analysis confirmed the expression of all predicted ORFs for strain ATCC 33277, including 854 hypothetical proteins, and allowed the identification of hitherto unknown transcriptional units. Twelve non-coding RNAs were identified, including 11 small RNAs and one cobalamin riboswitch. Fifty-seven genes were differentially regulated in the LuxS mutant. Addition of exogenous synthetic 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor) to the ΔluxS mutant culture complemented expression of a subset of genes, indicating that LuxS is involved in both AI-2 signaling and non-signaling dependent systems in P. gingivalis. This work provides an important dataset for future study of P. gingivalis pathophysiology and further defines the LuxS regulon in this oral pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Porphyromonas gingivalis/genética , Eliminación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Homoserina/análogos & derivados , Homoserina/metabolismo , Lactonas/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal/genética
11.
Expert Rev Proteomics ; 9(3): 311-23, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22809209

RESUMEN

This review covers developments in the study of polymicrobial communities, biofilms and selected areas of host response relevant to dental plaque and related areas of oral biology. The emphasis is on recent studies in which proteomic methods, particularly those using mass spectrometry as a readout, have played a major role in the investigation. The last 5-10 years have seen a transition of such methods from the periphery of oral biology to the mainstream, as in other areas of biomedical science. For reasons of focus and space, the authors do not discuss biomarker studies relevant to improved diagnostics for oral health, as this literature is rather substantial in its own right and deserves a separate treatment. Here, global gene regulation studies of plaque-component organisms, biofilm formation, multispecies interactions and host-microbe interactions are discussed. Several aspects of proteomics methodology that are relevant to the studies of multispecies systems are commented upon.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Placa Dental/microbiología , Bacterias Anaerobias Gramnegativas/aislamiento & purificación , Bacterias Anaerobias Gramnegativas/patogenicidad , Interacciones Huésped-Patógeno , Proteómica/métodos , Placa Dental/metabolismo , Fusobacterium nucleatum/aislamiento & purificación , Fusobacterium nucleatum/patogenicidad , Humanos , Interacciones Microbianas/fisiología , Enfermedades Periodontales/microbiología , Porphyromonas gingivalis/aislamiento & purificación , Porphyromonas gingivalis/patogenicidad , Prevotella intermedia/aislamiento & purificación , Prevotella intermedia/patogenicidad , Treponema denticola/aislamiento & purificación , Treponema denticola/patogenicidad , Virulencia
12.
J Bacteriol ; 193(18): 4758-65, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21764938

RESUMEN

Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process.


Asunto(s)
Electrones , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Metanol/metabolismo , Methylophilaceae/metabolismo , Oxígeno/metabolismo , Proteoma/análisis , Methylophilaceae/química , Methylophilaceae/genética , Methylophilaceae/crecimiento & desarrollo , Nitratos/metabolismo , Oxidación-Reducción
13.
Genome Res ; 21(11): 1892-904, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21750103

RESUMEN

Assembly of genes into operons is generally viewed as an important process during the continual adaptation of microbes to changing environmental challenges. However, the genome reorganization events that drive this process are also the roots of instability for existing operons. We have determined that there exists a statistically significant trend that correlates the proportion of genes encoded in operons in archaea to their phylogenetic lineage. We have further characterized how microbes deal with operon instability by mapping and comparing transcriptome architectures of four phylogenetically diverse extremophiles that span the range of operon stabilities observed across archaeal lineages: a photoheterotrophic halophile (Halobacterium salinarum NRC-1), a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and an anaerobic hyperthermophile (Pyrococcus furiosus DSM 3638). We demonstrate how the evolution of transcriptional elements (promoters and terminators) generates new operons, restores the coordinated regulation of translocated, inverted, and newly acquired genes, and introduces completely novel regulation for even some of the most conserved operonic genes such as those encoding subunits of the ribosome. The inverse correlation (r=-0.92) between the proportion of operons with such internally located transcriptional elements and the fraction of conserved operons in each of the four archaea reveals an unprecedented view into varying stages of operon evolution. Importantly, our integrated analysis has revealed that organisms adapted to higher growth temperatures have lower tolerance for genome reorganization events that disrupt operon structures.


Asunto(s)
Evolución Molecular , Genoma Arqueal , Transcriptoma , Adenosina Trifosfatasas/genética , Archaea/clasificación , Archaea/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica Arqueal , Genes Arqueales , Operón , Filogenia , Regiones Promotoras Genéticas , Biosíntesis de Proteínas/genética , Transporte de ARN , Transcripción Genética , Activación Transcripcional
14.
J Bacteriol ; 192(19): 4859-67, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20639322

RESUMEN

In recent years, techniques have been developed and perfected for high-throughput identification of proteins and their accurate partial sequencing by shotgun nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS), making it feasible to assess global protein expression profiles in organisms with sequenced genomes. We implemented comprehensive proteomics to assess the expressed portion of the genome of Methylobacillus flagellatus during methylotrophic growth. We detected a total of 1,671 proteins (64% of the inferred proteome), including all the predicted essential proteins. Nonrandom patterns observed with the nondetectable proteins appeared to correspond to silent genomic islands, as inferred through functional profiling and genome localization. The protein contents in methylamine- and methanol-grown cells showed a significant overlap, confirming the commonality of methylotrophic metabolism downstream of the primary oxidation reactions. The new insights into methylotrophy include detection of proteins for the N-methylglutamate methylamine oxidation pathway that appears to be auxiliary and detection of two alternative enzymes for both the 6-phosphogluconate dehydrogenase reaction (GndA and GndB) and the formate dehydrogenase reaction (FDH1 and FDH4). Mutant analysis revealed that GndA and FDH4 are crucial for the organism's fitness, while GndB and FDH1 are auxiliary.


Asunto(s)
Proteínas Bacterianas/metabolismo , Genoma Bacteriano/genética , Methylobacillus/metabolismo , Proteómica , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , Biología Computacional , Islas Genómicas/genética , Metanol/metabolismo , Metilaminas/metabolismo , Methylobacillus/genética , Modelos Genéticos , Espectrometría de Masas en Tándem
15.
Proc Natl Acad Sci U S A ; 107(24): 11050-5, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20534465

RESUMEN

In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway.


Asunto(s)
Proteínas Arqueales/metabolismo , Transporte de Electrón , Methanococcus/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Proteínas Arqueales/genética , Secuencia de Bases , Cartilla de ADN/genética , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Formiatos/metabolismo , Methanococcus/genética , Methanococcus/crecimiento & desarrollo , Modelos Biológicos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Complejos Multiproteicos , Oxidorreductasas/genética
16.
Mol Microbiol ; 75(2): 426-39, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19943898

RESUMEN

The ability of some microbial species to oxidize monomethylamine via glutamate-mediated pathways was proposed in the 1960s; however, genetic determinants of the pathways have never been described. In the present study we describe a gene cluster essential for operation of the N-methylglutamate pathway in the methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Four major polypeptides from protein fractions displaying high activities of N-methylglutamate synthetase, N-methylglutamate dehydrogenase and gamma-glutamylmethylamide synthetase were selected for mass spectrometry-based identification. The activities of enzymes were associated with the presence of peptides identified as ferredoxin-dependent glutamate synthase (GltB2), large subunit of putative heterotetrameric sarcosine oxidase (SoxA) and glutamine synthetase type III (GSIII) respectively. A gene cluster (8.3 kb) harbouring gltB2, soxA and gsIII-like genes was amplified from M. universalis FAM5, sequenced and assembled. Two partial and six complete open reading frames arranged in the order soxBDAG-gsIII-gltB132 were identified and subjected to mutational analysis, functional and metabolic profiling. We demonstrated that gltB-like and sox-like genes play a key role in methylamine utilization and encode N-methylglutamate synthetase and N-methylglutamate dehydrogenase respectively. Metabolic, enzymatic and mutational analyses showed that the gsIII-like gene encodes gamma-glutamylmethylamide synthetase; however, this enzyme is not essential for oxidation of methylamine.


Asunto(s)
Betaproteobacteria/genética , Ácido Glutámico/metabolismo , Metilaminas/metabolismo , Alanina/metabolismo , Proteínas Bacterianas/genética , Betaproteobacteria/efectos de los fármacos , Betaproteobacteria/crecimiento & desarrollo , Betaproteobacteria/metabolismo , Análisis Mutacional de ADN/métodos , Perfilación de la Expresión Génica/métodos , Glutamato Sintasa/genética , Glutamato Sintasa/metabolismo , Ácido Glutámico/genética , Ácido Glutámico/farmacología , Glutamina/metabolismo , Cinética , Familia de Multigenes , Sistemas de Lectura Abierta , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo
18.
BMC Microbiol ; 9: 185, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19723305

RESUMEN

BACKGROUND: Porphyromonas gingivalis is a Gram-negative intracellular pathogen associated with periodontal disease. We have previously reported on whole-cell quantitative proteomic analyses to investigate the differential expression of virulence factors as the organism transitions from an extracellular to intracellular lifestyle. The original results with the invasive strain P. gingivalis ATCC 33277 were obtained using the genome sequence available at the time, strain W83 [GenBank: AE015924]. We present here a re-processed dataset using the recently published genome annotation specific for strain ATCC 33277 [GenBank: AP009380] and an analysis of differential abundance based on metabolic pathways rather than individual proteins. RESULTS: Qualitative detection was observed for 1266 proteins using the strain ATCC 33277 annotation for 18 hour internalized P. gingivalis within human gingival epithelial cells and controls exposed to gingival cell culture medium, an improvement of 7% over the W83 annotation. Internalized cells showed increased abundance of proteins in the energy pathway from asparagine/aspartate amino acids to ATP. The pathway producing one short chain fatty acid, propionate, showed increased abundance, while that of another, butyrate, trended towards decreased abundance. The translational machinery, including ribosomal proteins and tRNA synthetases, showed a significant increase in protein relative abundance, as did proteins responsible for transcription. CONCLUSION: Use of the ATCC 33277 specific genome annotation resulted in improved proteome coverage with respect to the number of proteins observed both qualitatively in terms of protein identifications and quantitatively in terms of the number of calculated abundance ratios. Pathway analysis showed a significant increase in overall protein synthetic and transcriptional machinery in the absence of significant growth. These results suggest that the interior of host cells provides a more energy rich environment compared to the extracellular milieu. Shifts in the production of cytotoxic fatty acids by intracellular P. gingivalis may play a role in virulence. Moreover, despite extensive genomic re-arrangements between strains W83 and 33277, there is sufficient sequence similarity at the peptide level for proteomic abundance trends to be largely accurate when using the heterologous strain annotated genome as the reference for database searching.


Asunto(s)
Infecciones por Bacteroidaceae/microbiología , Porphyromonas gingivalis/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Línea Celular , Bases de Datos de Proteínas , Humanos , Redes y Vías Metabólicas , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/patogenicidad , Virulencia
19.
BMC Microbiol ; 9: 149, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19627604

RESUMEN

BACKGROUND: Methanogenic Archaea play key metabolic roles in anaerobic ecosystems, where they use H2 and other substrates to produce methane. Methanococcus maripaludis is a model for studies of the global response to nutrient limitations. RESULTS: We used high-coverage quantitative proteomics to determine the response of M. maripaludis to growth-limiting levels of H2, nitrogen, and phosphate. Six to ten percent of the proteome changed significantly with each nutrient limitation. H2 limitation increased the abundance of a wide variety of proteins involved in methanogenesis. However, one protein involved in methanogenesis decreased: a low-affinity [Fe] hydrogenase, which may dominate over a higher-affinity mechanism when H2 is abundant. Nitrogen limitation increased known nitrogen assimilation proteins. In addition, the increased abundance of molybdate transport proteins suggested they function for nitrogen fixation. An apparent regulon governed by the euryarchaeal nitrogen regulator NrpR is discussed. Phosphate limitation increased the abundance of three different sets of proteins, suggesting that all three function in phosphate transport. CONCLUSION: The global proteomic response of M. maripaludis to each nutrient limitation suggests a wider response than previously appreciated. The results give new insight into the function of several proteins, as well as providing information that should contribute to the formulation of a regulatory network model.


Asunto(s)
Proteínas Arqueales/metabolismo , Methanococcus/crecimiento & desarrollo , Methanococcus/metabolismo , Proteómica/métodos , Proteínas Arqueales/genética , Regulación de la Expresión Génica Arqueal , Hidrógeno/metabolismo , Methanococcus/genética , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Fosfatos/metabolismo , Regulón
20.
BMC Microbiol ; 9: 98, 2009 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-19454014

RESUMEN

BACKGROUND: Porphyromonas gingivalis is a periodontal pathogen that resides in a complex multispecies microbial biofilm community known as dental plaque. Confocal laser scanning microscopy showed that P. gingivalis can assemble into communities in vitro with Streptococcus gordonii and Fusobacterium nucleatum, common constituents of dental plaque. Whole cell quantitative proteomics, along with mutant construction and analysis, were conducted to investigate how P. gingivalis adapts to this three species community. RESULTS: 1156 P. gingivalis proteins were detected qualitatively during comparison of the three species model community with P. gingivalis incubated alone under the same conditions. Integration of spectral counting and summed signal intensity analyses of the dataset showed that 403 proteins were down-regulated and 89 proteins up-regulated. The proteomics results were inspected manually and an ontology analysis conducted using DAVID. Significant decreases were seen in proteins involved in cell shape and the formation of the cell envelope, as well as thiamine, cobalamin, and pyrimidine synthesis and DNA repair. An overall increase was seen in proteins involved in protein synthesis. HmuR, a TonB dependent outer membrane receptor, was up-regulated in the community and an hmuR deficient mutant was deficient in three species community formation, but was unimpaired in its ability to form mono- or dual-species biofilms. CONCLUSION: Collectively, these results indicate that P. gingivalis can assemble into a heterotypic community with F. nucleatum and S. gordonii, and that a community lifestyle provides physiologic support for P. gingivalis. Proteins such as HmuR, that are up-regulated, can be necessary for community structure.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Boca/microbiología , Porphyromonas gingivalis/fisiología , Proteómica/métodos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación hacia Abajo , Fusobacterium nucleatum/fisiología , Humanos , Microscopía Confocal , Mutación , Porphyromonas gingivalis/genética , Streptococcus gordonii/fisiología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...