Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Carcinog ; 63(4): 589-600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197430

RESUMEN

Prostate cancer (PCa) is the second most common cancer type among American men and it is estimated that in 2023, 34,700 men will die from PCa. Since it can take a considerable amount of time for the disease to progress to clinically evident cancer, there is ample opportunity for effective chemopreventive strategies to be applied for the successful management of PCa progression. In the current study, we have developed a two-tiered metabolomics-based screen to identify synergistic combinations of phytochemicals for PCa chemoprevention. This involves an initial screen for ATP depletion in PCa cells followed by a targeted screen for blocking glutamine uptake in the same cells. One of the phytochemical combinations (enoxolone [ENO] + silibinin [SIL]), identified via this screen, was examined for effects on PCa cell survival, oncogenic signaling and tumor growth in vivo. This combination was found to synergistically reduce cell survival, colony formation and cell cycle progression of PCa cell lines to a greater extent than either agent alone. The combination of ENO and SIL also synergistically reduced tumor growth when administered ad libitum through the diet in a HMVP2 allograft PCa tumor model. Treatment with the combination also significantly reduced STAT3 and mTORC1 signaling pathways in mouse and human PCa cells while significantly reducing levels of critical cell cycle regulatory proteins, contributing to the synergistic inhibition of tumor growth observed. Collectively, the current results demonstrate a novel approach to identifying synergistic combinations of phytochemicals for chemoprevention of PCa and possibly other cancers.


Asunto(s)
Ácido Glicirretínico , Neoplasias Primarias Secundarias , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Detección Precoz del Cáncer , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/prevención & control , Proteínas de Ciclo Celular , Línea Celular , Supervivencia Celular , Línea Celular Tumoral
2.
Sci Adv ; 10(5): eadg7887, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295166

RESUMEN

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Peso Molecular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Tirosina , Proteínas Tirosina Fosfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA