Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genet Med ; 25(1): 49-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322151

RESUMEN

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Ratones , Animales , Humanos , Metilación de ADN/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , ADN , Mutación
2.
J Cell Biol ; 221(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776132

RESUMEN

Centromere association of the chromosomal passenger complex (CPC; Borealin-Survivin-INCENP-Aurora B) and Sgo1 is crucial for chromosome biorientation, a process essential for error-free chromosome segregation. Phosphorylated histone H3 Thr3 (H3T3ph; directly recognized by Survivin) and histone H2A Thr120 (H2AT120ph; indirectly recognized via Sgo1), together with CPC's intrinsic nucleosome-binding ability, facilitate CPC centromere recruitment. However, the molecular basis for CPC-Sgo1 binding and how their physical interaction influences CPC centromere localization are lacking. Here, using an integrative structure-function approach, we show that the "histone H3-like" Sgo1 N-terminal tail-Survivin BIR domain interaction acts as a hotspot essential for CPC-Sgo1 assembly, while downstream Sgo1 residues and Borealin contribute for high-affinity binding. Disrupting Sgo1-Survivin interaction abolished CPC-Sgo1 assembly and perturbed CPC centromere localization and function. Our findings reveal that Sgo1 and H3T3ph use the same surface on Survivin to bind CPC. Hence, it is likely that these interactions take place in a spatiotemporally restricted manner, providing a rationale for the Sgo1-mediated "kinetochore-proximal" CPC centromere pool.


Asunto(s)
Proteínas de Ciclo Celular , Centrómero , Histonas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Histonas/genética , Histonas/metabolismo , Cinetocoros/metabolismo , Fosforilación , Survivin/genética , Survivin/metabolismo
3.
Trends Cell Biol ; 32(2): 165-176, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34663523

RESUMEN

The Chromosomal Passenger Complex (CPC) regulates a plethora of processes during multiple stages of nuclear and cytoplasmic division. Early during mitosis, the CPC is recruited to centromeres and kinetochores, and ensures that the duplicated chromosomes become properly connected to microtubules from opposite poles of the mitotic spindle. Progression into anaphase is accompanied by a striking relocation of the CPC from centromeres to the antiparallel microtubule overlaps of the anaphase spindle and to the equatorial cortex. This translocation requires direct interactions of the CPC with the kinesin-6 family member MKLP2/KIF20A, and the inactivation of cyclin B-cyclin-dependent kinase-1 (CDK1). Here, we review recent progress in the regulation of this relocation event. Furthermore, we discuss why the CPC must be relocated during early anaphase in light of recent advances in the functions of the CPC post metaphase.


Asunto(s)
Anafase , Proteínas Cromosómicas no Histona , Aurora Quinasa B/genética , Centrómero , Humanos , Microtúbulos , Mitosis , Huso Acromático
4.
Cell Rep ; 37(7): 110053, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788613

RESUMEN

Recent work published in Cell Reports and Developmental Cell from Sen et al., Orr et al., and Papini et al., demonstrates that midzone-based Aurora B resolves chromosome segregation errors during anaphase.


Asunto(s)
Anafase , Segregación Cromosómica , Aurora Quinasa B
5.
Horm Res Paediatr ; 94(1-2): 76-80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34126618

RESUMEN

INTRODUCTION: Neonatal screening programs for congenital hypothyroidism (CH) have been implemented worldwide to facilitate early diagnosis and treatment. The Dutch neonatal CH screening is primarily based on the measurement of thyroxine (T4). When T4 is low, an additional thyroxine-binding globulin (TBG) measurement is performed to reduce the number of false-positive screening results due to harmless TBG deficiency. Here, we present a case of a rare functional TBG deficiency leading to a false suspicion of CH. CASE PRESENTATION: Neonatal screening in this patient revealed a decreased T4, normal TSH, and normal TBG concentration, suggesting central CH. However, free T4 was normal. DNA sequencing analysis revealed a novel, hemizygous mutation (c.139G>A) in SERPINA7, the gene encoding TBG, resulting in the substitution of the conserved amino acid alanine to threonine at position 27. Crystal structure analyses showed that this substitution has a detrimental effect on binding of T4 to TBG. CONCLUSIONS: The novel SERPINA7 variant in this patient led to a false suspicion of central hypothyroidism in the Dutch T4-based neonatal screening program. It is important to recognize patients with such TBG defects to prevent unnecessary additional testing and treatment.


Asunto(s)
Hipotiroidismo Congénito/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Mutación Missense , Globulina de Unión a Tiroxina/deficiencia , Globulina de Unión a Tiroxina/genética , Hipotiroidismo Congénito/genética , Errores Diagnósticos , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Masculino , Tamizaje Neonatal , Pruebas de Función de la Tiroides
6.
EMBO Rep ; 22(7): e52295, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33973335

RESUMEN

The shugoshin proteins are universal protectors of centromeric cohesin during mitosis and meiosis. The binding of human hSgo1 to the PP2A-B56 phosphatase through a coiled-coil (CC) region mediates cohesion protection during mitosis. Here we undertook a structure function analysis of the PP2A-B56-hSgo1 complex, revealing unanticipated aspects of complex formation and function. We establish that a highly conserved pocket on the B56 regulatory subunit is required for hSgo1 binding and cohesion protection during mitosis in human somatic cells. Consistent with this, we show that hSgo1 blocks the binding of PP2A-B56 substrates containing a canonical B56 binding motif. We find that PP2A-B56 bound to hSgo1 dephosphorylates Cdk1 sites on hSgo1 itself to modulate cohesin interactions. Collectively our work provides important insight into cohesion protection during mitosis.


Asunto(s)
Proteínas de Ciclo Celular , Proteína Fosfatasa 2 , Proteína Quinasa CDC2 , Proteínas de Ciclo Celular/genética , Centrómero , Humanos , Meiosis , Mitosis , Proteína Fosfatasa 2/genética
7.
J Cell Biol ; 220(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404606

RESUMEN

How chromatin bridges are relayed to the chromosomal passenger complex (CPC) during mammalian cell division is unknown. In this issue, Petsalaki and Zachos (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202008029) show that the DNA damage checkpoint kinases ATM and Chk2 signal to the CPC to associate with a pool of cytoskeletal regulators, MKLP2-Cep55, in the midbody center and to delay abscission.


Asunto(s)
Citocinesis , Huso Acromático , Animales , Aurora Quinasa B/genética , Proteínas de Ciclo Celular/genética , División Celular , Células HeLa , Humanos
8.
J Cell Biol ; 219(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32027339

RESUMEN

Aurora B kinase is essential for faithful chromosome segregation during mitosis. During (pro)metaphase, Aurora B is concentrated at the inner centromere by the kinases Haspin and Bub1. However, how Haspin and Bub1 collaborate to control Aurora B activity at centromeres remains unclear. Here, we show that either Haspin or Bub1 activity is sufficient to recruit Aurora B to a distinct chromosomal locus. Moreover, we identified a small, Bub1 kinase-dependent Aurora B pool that supported faithful chromosome segregation in otherwise unchallenged cells. Joined inhibition of Haspin and Bub1 activities fully abolished Aurora B accumulation at centromeres. While this impaired the correction of erroneous KT-MT attachments, it did not compromise the mitotic checkpoint, nor the phosphorylation of the Aurora B kinetochore substrates Hec1, Dsn1, and Knl1. This suggests that Aurora B substrates at the kinetochore are not phosphorylated by centromere-localized pools of Aurora B, and calls for a reevaluation of the current spatial models for how tension affects Aurora B-dependent kinetochore phosphorylation.


Asunto(s)
Aurora Quinasa B/metabolismo , Segregación Cromosómica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinetocoros/enzimología , Microtúbulos/enzimología , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasa B/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células HCT116 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Cinesinas/genética , Cinesinas/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Factores de Tiempo
9.
Nat Commun ; 8: 15542, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28561035

RESUMEN

Faithful chromosome segregation during mitosis requires that the kinetochores of all sister chromatids become stably connected to microtubules derived from opposite spindle poles. How stable chromosome bi-orientation is accomplished and coordinated with anaphase onset remains incompletely understood. Here we show that stable chromosome bi-orientation requires inner centromere localization of the non-enzymatic subunits of the chromosomal passenger complex (CPC) to maintain centromeric cohesion. Precise inner centromere localization of the CPC appears less relevant for Aurora B-dependent resolution of erroneous kinetochore-microtubule (KT-MT) attachments and for the stabilization of bi-oriented KT-MT attachments once sister chromatid cohesion is preserved via knock-down of WAPL. However, Aurora B inner centromere localization is essential for mitotic checkpoint silencing to allow spatial separation from its kinetochore substrate KNL1. Our data infer that the CPC is localized at the inner centromere to sustain centromere cohesion on bi-oriented chromosomes and to coordinate mitotic checkpoint silencing with chromosome bi-orientation.


Asunto(s)
Aurora Quinasa B/metabolismo , Centrómero/ultraestructura , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Anafase , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregación Cromosómica , Cromosomas/metabolismo , Silenciador del Gen , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Fosforilación , ARN Interferente Pequeño/metabolismo , Huso Acromático/metabolismo
10.
PLoS One ; 12(6): e0179514, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28640891

RESUMEN

The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.


Asunto(s)
Baculoviridae/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Genoma Humano/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación Puntual , Proteínas Serina-Treonina Quinasas/genética
11.
Front Cell Dev Biol ; 5: 112, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312936

RESUMEN

Error-free chromosome segregation is essential for the maintenance of genomic integrity during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes predominantly to the inner centromere, a specialized region of chromatin that lies at the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of the CPC at the inner centromere and this location is thought to be crucial for the CPC to function. However, recent studies sketch a subtler picture, in which not all functions of the CPC require strict confinement to the inner centromere. In this review we discuss the molecular pathways that direct Aurora B to the inner centromere and deliberate if and why this specific localization is important for Aurora B function.

12.
Cell Rep ; 12(3): 380-7, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26166576

RESUMEN

The chromosomal passenger complex is essential for error-free chromosome segregation and proper execution of cytokinesis. To coordinate nuclear division with cytoplasmic division, its enzymatic subunit, Aurora B, relocalizes from centromeres in metaphase to the spindle midzone in anaphase. In budding yeast, this requires dephosphorylation of the microtubule-binding (MTB) domain of the INCENP analog Sli15. The mechanistic basis for this relocalization in metazoans is incompletely understood. We demonstrate that the putative coiled-coil domain within INCENP drives midzone localization of Aurora B via a direct, electrostatic interaction with microtubules. Furthermore, we provide evidence that the CPC multimerizes via INCENP's centromere-targeting domain (CEN box), which increases the MTB affinity of INCENP. In (pro)metaphase, the MTB affinity of INCENP is outcompeted by the affinity of its CEN box for centromeres, while at anaphase onset­when the histone mark H2AT120 is dephosphorylated­INCENP and Aurora B switch from centromere to microtubule localization.


Asunto(s)
Aurora Quinasa B/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Microtúbulos/metabolismo , Anafase , Aurora Quinasa B/genética , Segregación Cromosómica , Células HeLa/fisiología , Humanos , Unión Proteica , Estructura Terciaria de Proteína
13.
Mol Cell ; 57(5): 824-835, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25661489

RESUMEN

Regulated recruitment of the kinase-adaptor complex BUB1/BUB3 to kinetochores is crucial for correcting faulty chromosome-spindle attachments and for spindle assembly checkpoint (SAC) signaling. BUB1/BUB3 localizes to kinetochores by binding phosphorylated MELT motifs (MELpT) in the kinetochore scaffold KNL1. Human KNL1 has 19 repeats that contain a MELT-like sequence. The repeats are, however, larger than MELT, and repeat sequences can vary significantly. Using systematic screening, we show that only a limited number of repeats is "active." Repeat activity correlates with the presence of a vertebrate-specific SHT motif C-terminal to the MELT sequence. SHT motifs are phosphorylated by MPS1 in a manner that requires prior phosphorylation of MELT. Phospho-SHT (SHpT) synergizes with MELpT in BUB3/BUB1 binding in vitro and in cells, and human BUB3 mutated in a predicted SHpT-binding surface cannot localize to kinetochores. Our data show sequential multisite regulation of the KNL1-BUB1/BUB3 interaction and provide mechanistic insight into evolution of the KNL1-BUB3 interface.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Immunoblotting , Cinetocoros/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nocodazol/farmacología , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Interferencia de ARN , Secuencias Repetitivas de Aminoácido/genética , Homología de Secuencia de Aminoácido , Imagen de Lapso de Tiempo , Moduladores de Tubulina/farmacología
14.
PLoS Biol ; 13(1): e1002038, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25603503

RESUMEN

The second messenger cAMP is known to augment glucose-induced insulin secretion. However, its downstream targets in pancreatic ß-cells have not been unequivocally determined. Therefore, we designed cAMP analogues by a structure-guided approach that act as Epac2-selective agonists both in vitro and in vivo. These analogues activate Epac2 about two orders of magnitude more potently than cAMP. The high potency arises from increased affinity as well as increased maximal activation. Crystallographic studies demonstrate that this is due to unique interactions. At least one of the Epac2-specific agonists, Sp-8-BnT-cAMPS (S-220), enhances glucose-induced insulin secretion in human pancreatic cells. Selective targeting of Epac2 is thus proven possible and may be an option in diabetes treatment.


Asunto(s)
AMP Cíclico/análogos & derivados , AMP Cíclico/química , Factores de Intercambio de Guanina Nucleótido/agonistas , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , AMP Cíclico/farmacología , Diseño de Fármacos , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/fisiología , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Modelos Moleculares , Unión Proteica
15.
Pigment Cell Melanoma Res ; 28(3): 318-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25515853

RESUMEN

Resistance to treatment is the main problem of targeted treatment for cancer. We followed ten patients during treatment with vemurafenib, by three-dimensional imaging. In all patients, only a subset of lesions progressed. Next-generation DNA sequencing was performed on sequential biopsies in four patients to uncover mechanisms of resistance. In two patients, we identified mutations that explained resistance to vemurafenib; one of these patients had a secondary BRAF L505H mutation. This is the first observation of a secondary BRAF mutation in a vemurafenib-resistant patient-derived melanoma sample, which confirms the potential importance of the BRAF L505H mutation in the development of therapy resistance. Moreover, this study hints toward an important role for tumor heterogeneity in determining the outcome of targeted treatments.


Asunto(s)
Diagnóstico por Imagen , Resistencia a Antineoplásicos/genética , Heterogeneidad Genética , Indoles/uso terapéutico , Melanoma/tratamiento farmacológico , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Sulfonamidas/uso terapéutico , Biopsia , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Indoles/farmacología , Melanoma/genética , Melanoma/patología , Metástasis de la Neoplasia , Sulfonamidas/farmacología , Vemurafenib
17.
Proc Natl Acad Sci U S A ; 109(43): 17424-9, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045692

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) proteins have a critical function in abscission, the final separation of the daughter cells during cytokinesis. Here, we describe the structure and function of a previously uncharacterized ESCRT-III interacting protein, MIT-domain containing protein 1 (MITD1). Crystal structures of MITD1 reveal a dimer, with a microtubule-interacting and trafficking (MIT) domain at the N terminus and a unique, unanticipated phospholipase D-like (PLD) domain at the C terminus that binds membranes. We show that the MIT domain binds to a subset of ESCRT-III subunits and that this interaction mediates MITD1 recruitment to the midbody during cytokinesis. Depletion of MITD1 causes a distinct cytokinetic phenotype consistent with destabilization of the midbody and abscission failure. These results suggest a model whereby MITD1 coordinates the activity of ESCRT-III during abscission with earlier events in the final stages of cell division.


Asunto(s)
Citocinesis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Fosfolipasa D/metabolismo , Cristalografía por Rayos X , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Unión Proteica , Pliegue de Proteína
18.
Cell Rep ; 1(3): 200-7, 2012 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-22832194

RESUMEN

Activation of the complement system results in formation of membrane attack complexes (MACs), pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF) domains, resulting in a C5b6-C7-C8ß-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/química , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/química , Proteínas del Sistema Complemento/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Complemento C5b/química , Complejo de Ataque a Membrana del Sistema Complemento/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Ovinos , Solubilidad , Coloración y Etiquetado , Relación Estructura-Actividad
19.
Cell ; 143(6): 865-7, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21145452

RESUMEN

Being at the right place and time is as fundamental to biology as it is to academic careers. In this issue, Moravcevic and colleagues (2010) survey membrane-interacting proteins in yeast and discover a new membrane-targeting module, the kinase associated-1 domain KA1, which ensures that proteins are active at the correct place and time.

20.
Hum Mutat ; 30(3): 446-53, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19085939

RESUMEN

Pyruvate kinase (PK) deficiency is a rare disease but an important cause of hereditary nonspherocytic hemolytic anemia. The disease is caused by mutations in the PKLR gene and shows a marked variability in clinical expression. We report on the molecular characterization of 38 PK-deficient patients from 35 unrelated families. Twenty-nine different PKLR mutations were detected, of which 15 are reported here for the first time. Two novel deletions are reported: c.142_159del18 is the largest in-frame deletion described thus far and predicts the loss of six consecutive amino acids (p.Thr48_Thr53del) in the N-terminal domain of red blood cell PK. The other deletion removes nearly 1.5 kb of genomic DNA sequence (c.1618+37_2064del1477) and is one of a few large deletional mutants in PKLR. In addition, 13 novel point mutations were identified: one nonsense mutant, p.Arg488X, and 12 missense mutations, predicting the substitution of a single amino acid: p.Arg40Trp, p.Leu73Pro, p.Ile90Asn, p.Gly111Arg, p.Ala154Thr, p.Arg163Leu, p.Gly165Val, p.Leu272Val, p.Ile310Asn, p.Val320Leu, p.Gly358Glu, and p.Leu374Pro. We used the three-dimensional (3D) structure of recombinant human tetrameric PK to evaluate the protein structural context of the affected residues. In addition, in selected patients red blood cell PK antigen levels were measured by enzyme-linked immunosorbent assay (ELISA). Collectively, the results provided us with a rationale for the observed enzyme deficiency and contribute to both a better understanding of the genotype-to-phenotype correlation in PK deficiency as well as the enzyme's structure and function.


Asunto(s)
Mutación , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/metabolismo , Frecuencia de los Genes , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Países Bajos , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Piruvato Quinasa/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...