Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Brain ; 147(2): 554-565, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038362

RESUMEN

Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about the precise nature of the immune dysregulation underlying the development of the disease. Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high-resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 patients with other neurological diseases (n = 48 057). Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely reflect genetic effects on RNA splicing and cell-type specific gene expression respectively. Collectively, our study suggests that alterations in viral control mechanisms might be important in the development of multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Humanos , Linfocitos T CD8-positivos , Regulación hacia Arriba , Antivirales , Líquido Cefalorraquídeo/metabolismo , Proteínas de la Membrana/genética
2.
Cancer Discov ; 13(5): 1058-1083, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37067191

RESUMEN

Despite some notable successes, there are still relatively few agents approved for cancer prevention. Here we review progress thus far in the development of medicines for cancer prevention, and we outline some key concepts that could further enable or accelerate drug development for cancer prevention in the future. These are summarized under six key themes: (i) unmet clinical need, (ii) patient identification, (iii) risk stratification, (iv) pharmacological intervention, (v) clinical trials, and (vi) health care policy. These concepts, if successfully realized, may help to increase the number of medicines available for cancer prevention. SIGNIFICANCE: The huge potential public health benefits of preventing cancer, combined with recent advances in the availability of novel early detection technologies and new treatment modalities, has caused us to revisit the opportunities and challenges associated with developing medicines to prevent cancer. Here we review progress in the field of developing medicines to prevent cancer to date, and we present a series of ideas that might help in the development of more medicines to prevent cancer in the future.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Desarrollo de Medicamentos
3.
Front Bioinform ; 3: 1069487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035035

RESUMEN

Seasonal influenza vaccines must be updated regularly to account for mutations that allow influenza viruses to escape our existing immunity. A successful vaccine should represent the genetic diversity of recently circulating viruses and induce antibodies that effectively prevent infection by those recent viruses. Thus, linking the genetic composition of circulating viruses and the serological experimental results measuring antibody efficacy is crucial to the vaccine design decision. Historically, genetic and serological data have been presented separately in the form of static visualizations of phylogenetic trees and tabular serological results to identify vaccine candidates. To simplify this decision-making process, we have created an interactive tool for visualizing serological data that has been integrated into Nextstrain's real-time phylogenetic visualization framework, Auspice. We show how the combined interactive visualizations may be used by decision makers to explore the relationships between complex data sets for both prospective vaccine virus selection and retrospectively exploring the performance of vaccine viruses.

4.
Genes Chromosomes Cancer ; 62(3): 121-130, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36326821

RESUMEN

Tumor mutational burden (TMB), measured by exome or panel sequencing of tumor tissue or blood (bTMB), is a potential predictive biomarker for treatment benefit in patients with various cancer types receiving immunotherapy targeting checkpoint pathways. However, significant variability in TMB measurement has been observed. We developed contrived bTMB reference materials using DNA from tumor cell lines and donor-matched lymphoblastoid cell lines to support calibration and alignment across laboratories and platforms. Contrived bTMB reference materials were developed using genomic DNA from lung tumor cell lines blended into donor-matched lymphoblastoid cell lines at 0.5% and 2% tumor content, fragmented and size-selected to mirror the size profile of circulating cell-free tumor DNA with TMB scores of 7, 9, 20, and 26 mut/Mb. Variant allele frequency (VAF) and bTMB scores were assessed using PredicineATLAS and GuardantOMNI next-generation sequencing assays. DNA fragment sizes in the contrived reference samples were similar to those found within patient plasma-derived cell-free DNA, and mutational patterns aligned with those in the parental tumor lines. For the 7, 20, and 26 mut/Mb contrived reference samples with 2% tumor content, bTMB scores estimated using either assay aligned with expected scores from the parental tumor cell lines and showed good reproducibility. A bioinformatic filtration step was required to account for low-VAF artifact variants. We demonstrate the feasibility and challenges of producing and using bTMB reference standards across a range of bTMB levels, and how such standards could support the calibration and validation of bTMB platforms and help harmonization between panels and laboratories.


Asunto(s)
Neoplasias Pulmonares , Neoplasias , Humanos , Reproducibilidad de los Resultados , Neoplasias/genética , Mutación , Inmunoterapia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/genética
5.
Nat Commun ; 13(1): 6484, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309507

RESUMEN

In the second quarter of 2022, there was a global surge of emergent SARS-CoV-2 lineages that had a distinct growth advantage over then-dominant Omicron BA.1 and BA.2 lineages. By generating 10,403 Omicron genomes, we show that Aotearoa New Zealand observed an influx of these immune-evasive variants (BA.2.12.1, BA.4, and BA.5) through the border. This is explained by the return to significant levels of international travel following the border's reopening in March 2022. We estimate one Omicron transmission event from the border to the community for every ~5,000 passenger arrivals at the current levels of travel and restriction. Although most of these introductions did not instigate any detected onward transmission, a small minority triggered large outbreaks. Genomic surveillance at the border provides a lens on the rate at which new variants might gain a foothold and trigger new waves of infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Nueva Zelanda/epidemiología , SARS-CoV-2/genética , COVID-19/epidemiología , Brotes de Enfermedades
6.
Bone Jt Open ; 3(10): 746-752, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36181319

RESUMEN

AIMS: Understanding of open fracture management is skewed due to reliance on small-number lower limb, specialist unit reports and large, unfocused registry data collections. To address this, we carried out the Open Fracture Patient Evaluation Nationwide (OPEN) study, and report the demographic details and the initial steps of care for patients admitted with open fractures in the UK. METHODS: Any patient admitted to hospital with an open fracture between 1 June 2021 and 30 September 2021 was included, excluding phalanges and isolated hand injuries. Institutional information governance approval was obtained at the lead site and all data entered using Research Electronic Data Capture. Demographic details, injury, fracture classification, and patient dispersal were detailed. RESULTS: In total, 1,175 patients (median age 47 years (interquartile range (IQR) 29 to 65), 61.0% male (n = 717)) were admitted across 51 sites. A total of 546 patients (47.1%) were employed, 5.4% (n = 63) were diabetic, and 28.8% (n = 335) were smokers. In total, 29.0% of patients (n = 341) had more than one injury and 4.8% (n = 56) had two or more open fractures, while 51.3% of fractures (n = 637) occurred in the lower leg. Fractures sustained in vehicle incidents and collisions are common (38.8%; n = 455) and typically seen in younger patients. A simple fall (35.0%; n = 410) is common in older people. Overall, 69.8% (n = 786) of patients were admitted directly to an orthoplastic centre, 23.0% (n = 259) were transferred to an orthoplastic centre after initial management elsewhere, and 7.2% were managed outwith specialist units (n = 81). CONCLUSION: This study describes the epidemiology of open fractures in the UK. For a decade, orthopaedic surgeons have been practicing in a guideline-driven, network system without understanding the patient features, injury characteristics, or dispersal processes of the wider population. This work will inform care pathways as the UK looks to the future of trauma networks and guidelines, and how to optimize care for patients with open fractures.Cite this article: Bone Jt Open 2022;3(10):746-752.

7.
Bone Joint J ; 104-B(9): 1073-1080, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36047016

RESUMEN

AIMS: The Open-Fracture Patient Evaluation Nationwide (OPEN) study was performed to provide clarity in open fracture management previously skewed by small, specialist centre studies and large, unfocused registry investigations. We report the current management metrics of open fractures across the UK. METHOD: Patients admitted to hospital with an open fracture (excluding phalanges or isolated hand injuries) between 1 June 2021 and 30 September 2021 were included. Institutional information governance approval was obtained at the lead site and all data entered using Research Electronic Data Capture software. All domains of the British Orthopaedic Association Standard for Open Fracture Management were recorded. RESULTS: Across 51 centres, 1,175 patients were analyzed. Antibiotics were given to 754 (69.0%) in the emergency department, 240 (22.0%) pre-hospital, and 99 (9.1%) as inpatients. Wounds were photographed in 848 (72.7%) cases. Median time to first surgery was 16 hrs 14 mins (interquartile range (IQR) 8 hrs 29 mins to 23 hrs 19 mins). Complex injuries were operated on sooner (median 12 hrs 51 mins (IQR 4 hrs 36 mins to 21 hrs 14 mins)). Of initial procedures, 1,053 (90.3%) occurred between 8am and 8pm. A consultant orthopaedic surgeon was present at 1,039 (89.2%) first procedures. In orthoplastic centres, a consultant plastic surgeon was present at 465 (45.1%) first procedures. Overall, 706 (60.8%) patients required a single operation. At primary debridement, 798 (65.0%) fractures were definitively fixed, while 734 (59.8%) fractures had fixation and coverage in one operation through direct closure or soft-tissue coverage. Negative pressure wound therapy was used in 235 (67.7%) staged procedures. Following wound closure or soft-tissue cover, 509 (47.0%) patients received antibiotics for a median of three days (IQR 1 to 7). CONCLUSION: OPEN provides an insight into care across the UK and different levels of hospital for open fractures. Patients are predominantly operated on promptly, in working hours, and at specialist centres. Areas for improvement include combined patient review and follow-up, scheduled operating, earlier definitive soft-tissue cover, and more robust antibiotic husbandry.Cite this article: Bone Joint J 2022;104-B(9):1073-1080.


Asunto(s)
Fracturas Abiertas , Fracturas de la Tibia , Antibacterianos , Estudios de Seguimiento , Fijación Interna de Fracturas/métodos , Fracturas Abiertas/cirugía , Humanos , Estudios Retrospectivos , Infección de la Herida Quirúrgica , Fracturas de la Tibia/cirugía , Resultado del Tratamiento , Reino Unido
8.
Nat Commun ; 13(1): 4035, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821124

RESUMEN

New Zealand's COVID-19 elimination strategy heavily relied on the use of genomics to inform contact tracing, linking cases to the border and to clusters during community outbreaks. In August 2021, New Zealand entered its second nationwide lockdown after the detection of a single community case with no immediately apparent epidemiological link to the border. This incursion resulted in the largest outbreak seen in New Zealand caused by the Delta Variant of Concern. Here we generated 3806 high quality SARS-CoV-2 genomes from cases reported in New Zealand between 17 August and 1 December 2021, representing 43% of reported cases. We detected wide geographical spread coupled with undetected community transmission, characterised by the apparent extinction and reappearance of genomically linked clusters. We also identified the emergence, and near replacement, of genomes possessing a 10-nucleotide frameshift deletion that caused the likely truncation of accessory protein ORF7a. By early October, New Zealand moved from an elimination strategy to a suppression strategy and the role of genomics changed markedly from being used to track and trace, towards population-level surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Genómica , Humanos , Nueva Zelanda/epidemiología , SARS-CoV-2/genética
9.
Bioinformatics ; 38(5): 1450-1451, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34864895

RESUMEN

SUMMARY: Homologous recombination is an important evolutionary process in bacteria and other prokaryotes, which increases genomic sequence diversity and can facilitate adaptation. Several methods and tools have been developed to detect genomic regions recently affected by recombination. Exploration and visualization of such recombination events can reveal valuable biological insights, but it remains challenging. Here, we present RCandy, a platform-independent R package for rapid, simple and flexible visualization of recombination events in bacterial genomes. AVAILABILITY AND IMPLEMENTATION: RCandy is an R package freely available for use under the MIT license. It is platform-independent and has been tested on Windows, Linux and MacOSX. The source code comes together with a detailed vignette available on GitHub at https://github.com/ChrispinChaguza/RCandy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica , Programas Informáticos , Genoma , Bacterias , Evolución Biológica
10.
Water Res ; 205: 117710, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34607084

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) likely emerged from a zoonotic spill-over event and has led to a global pandemic. The public health response has been predominantly informed by surveillance of symptomatic individuals and contact tracing, with quarantine, and other preventive measures have then been applied to mitigate further spread. Non-traditional methods of surveillance such as genomic epidemiology and wastewater-based epidemiology (WBE) have also been leveraged during this pandemic. Genomic epidemiology uses high-throughput sequencing of SARS-CoV-2 genomes to inform local and international transmission events, as well as the diversity of circulating variants. WBE uses wastewater to analyse community spread, as it is known that SARS-CoV-2 is shed through bodily excretions. Since both symptomatic and asymptomatic individuals contribute to wastewater inputs, we hypothesized that the resultant pooled sample of population-wide excreta can provide a more comprehensive picture of SARS-CoV-2 genomic diversity circulating in a community than clinical testing and sequencing alone. In this study, we analysed 91 wastewater samples from 11 states in the USA, where the majority of samples represent Maricopa County, Arizona (USA). With the objective of assessing the viral diversity at a population scale, we undertook a single-nucleotide variant (SNV) analysis on data from 52 samples with >90% SARS-CoV-2 genome coverage of sequence reads, and compared these SNVs with those detected in genomes sequenced from clinical patients. We identified 7973 SNVs, of which 548 were "novel" SNVs that had not yet been identified in the global clinical-derived data as of 17th June 2020 (the day after our last wastewater sampling date). However, between 17th of June 2020 and 20th November 2020, almost half of the novel SNVs have since been detected in clinical-derived data. Using the combination of SNVs present in each sample, we identified the more probable lineages present in that sample and compared them to lineages observed in North America prior to our sampling dates. The wastewater-derived SARS-CoV-2 sequence data indicates there were more lineages circulating across the sampled communities than represented in the clinical-derived data. Principal coordinate analyses identified patterns in population structure based on genetic variation within the sequenced samples, with clear trends associated with increased diversity likely due to a higher number of infected individuals relative to the sampling dates. We demonstrate that genetic correlation analysis combined with SNVs analysis using wastewater sampling can provide a comprehensive snapshot of the SARS-CoV-2 genetic population structure circulating within a community, which might not be observed if relying solely on clinical cases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pandemias , Aguas Residuales
11.
Virus Evol ; 7(2): veab052, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527282

RESUMEN

New Zealand, Australia, Iceland, and Taiwan all saw success in controlling their first waves of Coronavirus Disease 2019 (COVID-19). As islands, they make excellent case studies for exploring the effects of international travel and human movement on the spread of COVID-19. We employed a range of robust phylodynamic methods and genome subsampling strategies to infer the epidemiological history of Severe acute respiratory syndrome coronavirus 2 in these four countries. We compared these results to transmission clusters identified by the New Zealand Ministry of Health by contact tracing strategies. We estimated the effective reproduction number of COVID-19 as 1-1.4 during early stages of the pandemic and show that it declined below 1 as human movement was restricted. We also showed that this disease was introduced many times into each country and that introductions slowed down markedly following the reduction of international travel in mid-March 2020. Finally, we confirmed that New Zealand transmission clusters identified via standard health surveillance strategies largely agree with those defined by genomic data. We have demonstrated how the use of genomic data and computational biology methods can assist health officials in characterising the epidemiology of viral epidemics and for contact tracing.

12.
Emerg Infect Dis ; 27(9): 2361-2368, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34424164

RESUMEN

Since severe acute respiratory syndrome coronavirus 2 was first eliminated in New Zealand in May 2020, a total of 13 known coronavirus disease (COVID-19) community outbreaks have occurred, 2 of which led health officials to issue stay-at-home orders. These outbreaks originated at the border via isolating returnees, airline workers, and cargo vessels. Because a public health system was informed by real-time viral genomic sequencing and complete genomes typically were available within 12 hours of community-based positive COVID-19 test results, every outbreak was well-contained. A total of 225 community cases resulted in 3 deaths. Real-time genomics were essential for establishing links between cases when epidemiologic data could not do so and for identifying when concurrent outbreaks had different origins.


Asunto(s)
COVID-19 , Virus , Genómica , Humanos , Nueva Zelanda/epidemiología , SARS-CoV-2
13.
EMBO Mol Med ; 13(8): e12881, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34291583

RESUMEN

Glioma-derived cell-free DNA (cfDNA) is challenging to detect using liquid biopsy because quantities in body fluids are low. We determined the glioma-derived DNA fraction in cerebrospinal fluid (CSF), plasma, and urine samples from patients using sequencing of personalized capture panels guided by analysis of matched tumor biopsies. By sequencing cfDNA across thousands of mutations, identified individually in each patient's tumor, we detected tumor-derived DNA in the majority of CSF (7/8), plasma (10/12), and urine samples (10/16), with a median tumor fraction of 6.4 × 10-3 , 3.1 × 10-5 , and 4.7 × 10-5 , respectively. We identified a shift in the size distribution of tumor-derived cfDNA fragments in these body fluids. We further analyzed cfDNA fragment sizes using whole-genome sequencing, in urine samples from 35 glioma patients, 27 individuals with non-malignant brain disorders, and 26 healthy individuals. cfDNA in urine of glioma patients was significantly more fragmented compared to urine from patients with non-malignant brain disorders (P = 1.7 × 10-2 ) and healthy individuals (P = 5.2 × 10-9 ). Machine learning models integrating fragment length could differentiate urine samples from glioma patients (AUC = 0.80-0.91) suggesting possibilities for truly non-invasive cancer detection.


Asunto(s)
Ácidos Nucleicos Libres de Células , Glioma , Biomarcadores de Tumor , Glioma/genética , Humanos , Biopsia Líquida , Mutación , Plasma , Análisis de Secuencia de ADN
14.
Artículo en Inglés | MEDLINE | ID: mdl-34189396

RESUMEN

The analysis of human pathogens requires a diverse collection of bioinformatics tools. These tools include standard genomic and phylogenetic software and custom software developed to handle the relatively numerous and short genomes of viruses and bacteria. Researchers increasingly depend on the outputs of these tools to infer transmission dynamics of human diseases and make actionable recommendations to public health officials (Black et al., 2020; Gardy et al., 2015). In order to enable real-time analyses of pathogen evolution, bioinformatics tools must scale rapidly with the number of samples and be flexible enough to adapt to a variety of questions and organisms. To meet these needs, we developed Augur, a bioinformatics toolkit designed for phylogenetic analyses of human pathogens.

15.
Emerg Infect Dis ; 27(5): 1317-1322, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33900175

RESUMEN

Real-time genomic sequencing has played a major role in tracking the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contributing greatly to disease mitigation strategies. In August 2020, after having eliminated the virus, New Zealand experienced a second outbreak. During that outbreak, New Zealand used genomic sequencing in a primary role, leading to a second elimination of the virus. We generated genomes from 78% of the laboratory-confirmed samples of SARS-CoV-2 from the second outbreak and compared them with the available global genomic data. Genomic sequencing rapidly identified that virus causing the second outbreak in New Zealand belonged to a single cluster, thus resulting from a single introduction. However, successful identification of the origin of this outbreak was impeded by substantial biases and gaps in global sequencing data. Access to a broader and more heterogenous sample of global genomic data would strengthen efforts to locate the source of any new outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brotes de Enfermedades , Genómica , Humanos , Nueva Zelanda/epidemiología
16.
Nat Med ; 27(4): 710-716, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846610

RESUMEN

On 1 August 2018, the Democratic Republic of the Congo (DRC) declared its tenth Ebola virus disease (EVD) outbreak. To aid the epidemiologic response, the Institut National de Recherche Biomédicale (INRB) implemented an end-to-end genomic surveillance system, including sequencing, bioinformatic analysis and dissemination of genomic epidemiologic results to frontline public health workers. We report 744 new genomes sampled between 27 July 2018 and 27 April 2020 generated by this surveillance effort. Together with previously available sequence data (n = 48 genomes), these data represent almost 24% of all laboratory-confirmed Ebola virus (EBOV) infections in DRC in the period analyzed. We inferred spatiotemporal transmission dynamics from the genomic data as new sequences were generated, and disseminated the results to support epidemiologic response efforts. Here we provide an overview of how this genomic surveillance system functioned, present a full phylodynamic analysis of 792 Ebola genomes from the Nord Kivu outbreak and discuss how the genomic surveillance data informed response efforts and public health decision making.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/genética , Genómica , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/genética , Análisis de Secuencia de ADN , Congo/epidemiología , Vacunas contra el Virus del Ébola/inmunología , Genoma Viral , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Filogenia , Recurrencia , Reinfección/virología , Análisis Espacio-Temporal
17.
N Engl J Med ; 384(13): 1240-1247, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33789012

RESUMEN

During the 2018-2020 Ebola virus disease (EVD) outbreak in North Kivu province in the Democratic Republic of Congo, EVD was diagnosed in a patient who had received the recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) (Merck). His treatment included an Ebola virus (EBOV)-specific monoclonal antibody (mAb114), and he recovered within 14 days. However, 6 months later, he presented again with severe EVD-like illness and EBOV viremia, and he died. We initiated epidemiologic and genomic investigations that showed that the patient had had a relapse of acute EVD that led to a transmission chain resulting in 91 cases across six health zones over 4 months. (Funded by the Bill and Melinda Gates Foundation and others.).


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/transmisión , Adulto , Teorema de Bayes , República Democrática del Congo/epidemiología , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/aislamiento & purificación , Resultado Fatal , Genoma Viral , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/terapia , Humanos , Masculino , Mutación , Filogenia , ARN Viral/sangre , Recurrencia
18.
medRxiv ; 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33501452

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from a zoonotic spill-over event and has led to a global pandemic. The public health response has been predominantly informed by surveillance of symptomatic individuals and contact tracing, with quarantine, and other preventive measures have then been applied to mitigate further spread. Non-traditional methods of surveillance such as genomic epidemiology and wastewater-based epidemiology (WBE) have also been leveraged during this pandemic. Genomic epidemiology uses high-throughput sequencing of SARS-CoV-2 genomes to inform local and international transmission events, as well as the diversity of circulating variants. WBE uses wastewater to analyse community spread, as it is known that SARS-CoV-2 is shed through bodily excretions. Since both symptomatic and asymptomatic individuals contribute to wastewater inputs, we hypothesized that the resultant pooled sample of population-wide excreta can provide a more comprehensive picture of SARS-CoV-2 genomic diversity circulating in a community than clinical testing and sequencing alone. In this study, we analysed 91 wastewater samples from 11 states in the USA, where the majority of samples represent Maricopa County, Arizona (USA). With the objective of assessing the viral diversity at a population scale, we undertook a single-nucleotide variant (SNV) analysis on data from 52 samples with >90% SARS-CoV-2 genome coverage of sequence reads, and compared these SNVs with those detected in genomes sequenced from clinical patients. We identified 7973 SNVs, of which 5680 were novel SNVs that had not yet been identified in the global clinical-derived data as of 17th June 2020 (the day after our last wastewater sampling date). However, between 17th of June 2020 and 20th November 2020, almost half of the SNVs have since been detected in clinical-derived data. Using the combination of SNVs present in each sample, we identified the more probable lineages present in that sample and compared them to lineages observed in North America prior to our sampling dates. The wastewater-derived SARS-CoV-2 sequence data indicates there were more lineages circulating across the sampled communities than represented in the clinical-derived data. Principal coordinate analyses identified patterns in population structure based on genetic variation within the sequenced samples, with clear trends associated with increased diversity likely due to a higher number of infected individuals relative to the sampling dates. We demonstrate that genetic correlation analysis combined with SNVs analysis using wastewater sampling can provide a comprehensive snapshot of the SARS-CoV-2 genetic population structure circulating within a community, which might not be observed if relying solely on clinical cases.

19.
Emerg Infect Dis ; 27(3): 687-693, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33400642

RESUMEN

Since the first wave of coronavirus disease in March 2020, citizens and permanent residents returning to New Zealand have been required to undergo managed isolation and quarantine (MIQ) for 14 days and mandatory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of October 20, 2020, of 62,698 arrivals, testing of persons in MIQ had identified 215 cases of SARS-CoV-2 infection. Among 86 passengers on a flight from Dubai, United Arab Emirates, that arrived in New Zealand on September 29, test results were positive for 7 persons in MIQ. These passengers originated from 5 different countries before a layover in Dubai; 5 had negative predeparture SARS-CoV-2 test results. To assess possible points of infection, we analyzed information about their journeys, disease progression, and virus genomic data. All 7 SARS-CoV-2 genomes were genetically identical, except for a single mutation in 1 sample. Despite predeparture testing, multiple instances of in-flight SARS-CoV-2 transmission are likely.


Asunto(s)
Aeronaves , COVID-19 , Cuarentena , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/transmisión , Humanos , Máscaras , Nueva Zelanda , Distanciamiento Físico , SARS-CoV-2/clasificación , Emiratos Árabes Unidos
20.
Mol Biol Evol ; 38(4): 1608-1613, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33316043

RESUMEN

Since the start of the COVID-19 pandemic, an unprecedented number of genomic sequences of SARS-CoV-2 have been generated and shared with the scientific community. The unparalleled volume of available genetic data presents a unique opportunity to gain real-time insights into the virus transmission during the pandemic, but also a daunting computational hurdle if analyzed with gold-standard phylogeographic approaches. To tackle this practical limitation, we here describe and apply a rapid analytical pipeline to analyze the spatiotemporal dispersal history and dynamics of SARS-CoV-2 lineages. As a proof of concept, we focus on the Belgian epidemic, which has had one of the highest spatial densities of available SARS-CoV-2 genomes. Our pipeline has the potential to be quickly applied to other countries or regions, with key benefits in complementing epidemiological analyses in assessing the impact of intervention measures or their progressive easement.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Genoma Viral , Filogeografía , SARS-CoV-2/genética , Bélgica , COVID-19/epidemiología , Evolución Molecular , Genómica , Humanos , Funciones de Verosimilitud , Mutación , Aislamiento de Pacientes , Filogenia , Distanciamiento Físico , Análisis Espacio-Temporal , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...