RESUMEN
OBJECTIVES: The study aimed to assess the impact of diphenyliodonium hexafluorophosphate (DPI) on the physicochemical properties of experimental resin composites (ECRs) featuring reduced concentrations of camphorquinone (CQ)/amine. METHODS: Five concentrations of CQ (0.125, 0.25, 0.5, 0.75, and 1 mol%) with dimethylaminoethyl amine benzoate (EDAB) in a 1:2 mol% ratio (CQ:EDAB) were incorporated into a 50:50 mass% monomer blend of bisphenol glycidyl methacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). An additional 5 groups with the same CQ:EDAB concentrations had 0.5 mol% DPI added. Each resin group contained 60 wt% of 0.7 µm barium-alumino-silicate glass. Light transmission (n = 3), real-time degree of polymerization (n = 3), temperature change during polymerization (n = 5), polymerization shrinkage strain (n = 3), flexural strength, and modulus (n = 12), as well as water sorption and solubility (n = 5), were evaluated. Data were analyzed using two-way ANOVA and Tukey's post-hoc test (α = 0.05). RESULTS: Light transmission was reduced in groups containing 0.125 and 0.25 mol% of CQ without DPI. DPI increased temperature, degree and rate of polymerization, despite the reduction in CQ/amine concentration. Additionally, there was an increase in polymerization shrinkage strain, flexural strength and modulus, and a reduction in water sorption and solubility in ECRs with DPI, even with lower concentrations of CQ/EDAB. SIGNIFICANCE: DPI improved the assessed properties of composites across various concentrations of CQ/EDAB, showing the benefit of reducing the quantity of CQ used without compromising the properties and curing of the resin composites.
Asunto(s)
Resinas Compuestas , Ensayo de Materiales , Polietilenglicoles , Polimerizacion , Ácidos Polimetacrílicos , Terpenos , Resinas Compuestas/química , Terpenos/química , Polietilenglicoles/química , Ácidos Polimetacrílicos/química , Bisfenol A Glicidil Metacrilato/química , Propiedades de Superficie , Compuestos Onio/química , Poliuretanos/química , Resinas Acrílicas , Compuestos de Bifenilo , Alcanfor/análogos & derivadosRESUMEN
In root canal therapy, irrigating solutions are employed to eliminate the bacterial load and also prepare dentin for sealer interaction. The aim of this research was to assess how irrigating solutions employed on their own or in sequence affected the tooth structure. The best way to prepare the tooth for obturation using hydraulic calcium silicate cement (HCSC) sealers and gutta-percha, thus guiding clinicians on a matched irrigation-obturation strategy for optimized root canal treatment was investigated. The effect of irrigating solutions on dentine was investigated by assessing changes in dentin microhardness, ultrastructure and mineral content, organic/inorganic matter, surface roughness and Young's modulus. The interaction of four root canal sealers with the dentin was analysed by assessing the changes in microhardness of the dentin after sealer placement and also the sealer to dentin interface by scanning electron and confocal laser microscopy. The irrigating solutions damaged the dentin irreversibly both when used on their own and in combination. The best sequence involved sodium hypochlorite followed by chelator and a final rinse with sodium hypochlorite and obturation using HCSC sealers that enabled the restoration of dentin properties. The HCSC sealers did not rely on chelator irrigating solutions for a good material adaptation to dentin.