Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714890

RESUMEN

Diseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases-for example, the parasitic blood fluke infection schistosomiasis-are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus Fasciola because of a single amino acid change within the target of PZQ, a transient receptor potential ion channel in the melastatin family (TRPMPZQ), in Fasciola species. Here, we identify benzamidoquinazolinone analogs that are active against Fasciola TRPMPZQ. Structure-activity studies define an optimized ligand (BZQ) that caused protracted paralysis and tegumental damage to these liver flukes. BZQ also retained activity against Schistosoma mansoni comparable to PZQ and was active against TRPMPZQ orthologs in all profiled species of parasitic fluke. This broad-spectrum activity manifests as BZQ adopts a pose within the binding pocket of TRPMPZQ that is dependent on a ubiquitously conserved residue. BZQ therefore acts as a universal activator of trematode TRPMPZQ and a first-in-class, broad-spectrum flukicide.

2.
Sci Rep ; 13(1): 20390, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990129

RESUMEN

Schistosomiasis is a parasitic disease affecting more than 250 million people worldwide. The transcription factor c-Jun, which is induced in S. mansoni infection-associated liver disease, can promote hepatocyte survival but can also trigger hepatocellular carcinogenesis. We aimed to analyze the hepatic role of c-Jun following S. mansoni infection. We adopted a hepatocyte-specific c-Jun knockout mouse model (Alb-Cre/c-Jun loxP) and analyzed liver tissue and serum samples by quantitative real-time PCR array, western blotting, immunohistochemistry, hydroxyproline quantification, and functional analyses. Hepatocyte-specific c-Jun knockout (c-JunΔli) was confirmed by immunohistochemistry and western blotting. Infection with S. mansoni induced elevated aminotransferase-serum levels in c-JunΔli mice. Of note, hepatic Cyclin D1 expression was induced in infected c-Junf/f control mice but to a lower extent in c-JunΔli mice. S. mansoni soluble egg antigen-induced proliferation in a human hepatoma cell line was diminished by inhibition of c-Jun signaling. Markers for apoptosis, oxidative stress, ER stress, inflammation, autophagy, DNA-damage, and fibrosis were not altered in S. mansoni infected c-JunΔli mice compared to infected c-Junf/f controls. Enhanced liver damage in c-JunΔli mice suggested a protective role of c-Jun. A reduced Cyclin D1 expression and reduced hepatic regeneration could be the reason. In addition, it seems likely that the trends in pathological changes in c-JunΔli mice cumulatively led to a loss of the protective potential being responsible for the increased hepatocyte damage and loss of regenerative ability.


Asunto(s)
Schistosoma mansoni , Esquistosomiasis mansoni , Humanos , Ratones , Animales , Ciclina D1/metabolismo , Esquistosomiasis mansoni/parasitología , Hígado/metabolismo , Hepatocitos/metabolismo , Proliferación Celular
3.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790347

RESUMEN

Diseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases - for example, the parasitic blood fluke infection, schistosomiasis - are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus Fasciola. This is due to a single amino acid change within the target of PZQ, a transient receptor potential ion channel (TRPMPZQ), in Fasciola species. Here we identify benzamidoquinazolinone analogs that are active against Fasciola TRPMPZQ. Structure-activity studies define an optimized ligand (BZQ) that caused protracted paralysis and damage to the protective tegument of these liver flukes. BZQ also retained activity against Schistosoma mansoni comparable to PZQ and was active against TRPMPZQ orthologs in all profiled species of parasitic fluke. This broad spectrum activity was manifest as BZQ adopts a pose within the binding pocket of TRPMPZQ dependent on a ubiquitously conserved residue. BZQ therefore acts as a universal activator of trematode TRPMPZQ and a first-in-class, broad spectrum flukicide.

4.
Sci Rep ; 13(1): 9297, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291191

RESUMEN

Inhibition of eukaryotic initiation factor 4A has been proposed as a strategy to fight pathogens. Rocaglates exhibit the highest specificities among eIF4A inhibitors, but their anti-pathogenic potential has not been comprehensively assessed across eukaryotes. In silico analysis of the substitution patterns of six eIF4A1 aa residues critical to rocaglate binding, uncovered 35 variants. Molecular docking of eIF4A:RNA:rocaglate complexes, and in vitro thermal shift assays with select recombinantly expressed eIF4A variants, revealed that sensitivity correlated with low inferred binding energies and high melting temperature shifts. In vitro testing with silvestrol validated predicted resistance in Caenorhabditis elegans and Leishmania amazonensis and predicted sensitivity in Aedes sp., Schistosoma mansoni, Trypanosoma brucei, Plasmodium falciparum, and Toxoplasma gondii. Our analysis further revealed the possibility of targeting important insect, plant, animal, and human pathogens with rocaglates. Finally, our findings might help design novel synthetic rocaglate derivatives or alternative eIF4A inhibitors to fight pathogens.


Asunto(s)
Factor 4A Eucariótico de Iniciación , ARN , Animales , Humanos , Simulación del Acoplamiento Molecular , ARN/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , ARN Helicasas DEAD-box/metabolismo
5.
Front Cell Infect Microbiol ; 13: 1173557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305409

RESUMEN

Introduction: Schistosomes are the only mammalian flatworms that have evolved separate sexes. A key question of schistosome research is the male-dependent sexual maturation of the female since a constant pairing contact with a male is required for the onset of gonad development in the female. Although this phenomenon is long known, only recently a first peptide-based pheromone of males was identified that contributes to the control of female sexual development. Beyond this, our understanding of the molecular principles inducing the substantial developmental changes in a paired female is still rudimentary. Objectives: Previous transcriptomic studies have consistently pointed to neuronal genes being differentially expressed and upregulated in paired males. These genes included Smp_135230 and Smp_171580, both annotated as aromatic-L-amino-acid decarboxylases (DOPA decarboxylases). Here, we characterized both genes and investigated their roles in male-female interaction of S. mansoni. Methodologies/findings: Sequence analyses indicated that Smp_135230 represents an L-tyrosine decarboxylase (Smtdc-1), whereas Smp_171580 represents a DOPA decarboxylase (Smddc-1). By qRT-PCR, we confirmed the male-specific and pairing-dependent expression of both genes with a significant bias toward paired males. RNA-interference experiments showed a strong influence of each gene on gonad differentiation in paired females, which was enhanced by double knockdown. Accordingly, egg production was significantly reduced. By confocal laser scanning microscopy, a failure of oocyte maturation was found in paired knockdown females. Whole-mount in situ hybridization patterns exhibited the tissue-specific occurrence of both genes in particular cells at the ventral surface of the male, the gynecophoral canal, which represents the physical interface of both genders. These cells probably belong to the predicted neuronal cluster 2 of S. mansoni. Conclusion: Our results suggest that Smtdc-1 and Smddc-2 are male-competence factors that are expressed in neuronal cells at the contact zone between the genders as a response of pairing to subsequently control processes of female sexual maturation.


Asunto(s)
Schistosoma mansoni , Schistosomatidae , Femenino , Masculino , Animales , Schistosoma mansoni/genética , Maduración Sexual/genética , Diferenciación Celular , Perfilación de la Expresión Génica , Mamíferos
6.
Sci Rep ; 13(1): 9766, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328492

RESUMEN

In parasites such as Schistosoma mansoni, gene knockdown by RNA interference (RNAi) has become an indispensable tool for functional gene characterization. To distinguish target-specific RNAi effects versus off-target effects, controls are essential. To date, however, there is still no general agreement about suitable RNAi controls, which limits the comparability between studies. To address this point, we investigated three selected dsRNAs for their suitability as RNAi controls in experiments with adult S. mansoni in vitro. Two dsRNAs were of bacterial origin, the neomycin resistance gene (neoR) and the ampicillin resistance gene (ampR). The third one, the green fluorescent protein gene (gfp), originated from jellyfish. Following dsRNA application, we analyzed physiological parameters like pairing stability, motility, and egg production as well as morphological integrity. Furthermore, using RT-qPCR we evaluated the potential of the used dsRNAs to influence transcript patterns of off-target genes, which had been predicted by si-Fi (siRNA-Finder). At the physiological and morphological levels, we observed no obvious changes in the dsRNA treatment groups compared to an untreated control. However, we detected remarkable differences at the transcript level of gene expression. Amongst the three tested candidates, we suggest dsRNA of the E. coli ampR gene as the most suitable RNAi control.


Asunto(s)
Escherichia coli , Schistosoma mansoni , Animales , Interferencia de ARN , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Escherichia coli/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
7.
Eur J Med Chem ; 251: 115179, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36948075

RESUMEN

Schistosomiasis is an infectious disease caused by blood flukes of the genus Schistosoma and affects approximately 200 million people worldwide. Since Praziquantel (PZQ) is the only drug for schistosomiasis, alternatives are needed. By a biochemical approach, we identified a tegumentally expressed aldehyde dehydrogenase (ALDH) of S. mansoni, SmALDH_312. Molecular analyses of adult parasites showed Smaldh_312 transcripts in both genders and different tissues. Physiological and cell-biological experiments exhibited detrimental effects of the drug disulfiram (DSF), a known ALDH inhibitor, on larval and adult schistosomes in vitro. DSF also reduced stem-cell proliferation and caused severe tegument damage in treated worms. In silico-modelling of SmALDH_312 and docking analyses predicted DSF binding, which we finally confirmed by enzyme assays with recombinant SmALDH_312. Furthermore, we identified compounds of the Medicine for Malaria Venture (MMV) pathogen box inhibiting SmALDH_312 activity. Our findings represent a promising starting point for further development towards new drugs for schistosomiasis.


Asunto(s)
Esquistosomiasis mansoni , Esquistosomiasis , Animales , Femenino , Masculino , Schistosoma mansoni , Esquistosomiasis mansoni/tratamiento farmacológico , Disulfiram/farmacología , Disulfiram/uso terapéutico , Aldehído Deshidrogenasa/farmacología
8.
JHEP Rep ; 5(2): 100625, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36590323

RESUMEN

Background & Aims: Schistosomiasis is a parasitic infection which affects more than 200 million people globally. Schistosome eggs, but not the adult worms, are mainly responsible for schistosomiasis-specific morbidity in the liver. It is unclear if S. mansoni eggs consume host metabolites, and how this compromises the host parenchyma. Methods: Metabolic reprogramming was analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging, liquid chromatography with high-resolution mass spectrometry, metabolite quantification, confocal laser scanning microscopy, live cell imaging, quantitative real-time PCR, western blotting, assessment of DNA damage, and immunohistology in hamster models and functional experiments in human cell lines. Major results were validated in human biopsies. Results: The infection with S. mansoni provokes hepatic exhaustion of neutral lipids and glycogen. Furthermore, the distribution of distinct lipid species and the regulation of rate-limiting metabolic enzymes is disrupted in the liver of S. mansoni infected animals. Notably, eggs mobilize, incorporate, and store host lipids, while the associated metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes. Administration of reactive oxygen species scavengers ameliorates these deleterious effects. Conclusions: Our findings indicate that S. mansoni eggs completely reprogram lipid and carbohydrate metabolism via soluble factors, which results in oxidative stress-induced cell damage in the host parenchyma. Impact and implications: The authors demonstrate that soluble egg products of the parasite S. mansoni induce hepatocellular reprogramming, causing metabolic exhaustion and a strong redox imbalance. Notably, eggs mobilize, incorporate, and store host lipids, while the metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes, independent of the host's immune response. S. mansoni eggs take advantage of the host environment through metabolic reprogramming of hepatocytes and enterocytes. By inducing DNA damage, this neglected tropical disease might promote hepatocellular damage and thus influence international health efforts.

9.
Arch Pharm (Weinheim) ; 356(3): e2200491, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36482264

RESUMEN

Schistosomiasis or bilharzia is caused by blood flukes of the genus Schistosoma and represents a considerable health and economic burden in tropical and subtropical regions. The treatment of this infectious disease relies on one single drug: praziquantel (PZQ). Therefore, new and potent antischistosomal compounds need to be developed. In our previous work, starting with the drug disulfiram, we developed dithiocarbamates with in vitro antischistosomal activities in the low micromolar range. Based on these results, we report in this study on the synthesis and biological testing of the structurally related dithiocarbazates against Schistosoma mansoni, one of the major species of schistosomes. In total, three series of dithiocarbazate derivatives were examined, and we found that the antischistosomal activity of N-unbranched dithiocarbazates increased by further N-substitution. Comparable tetra-substituted dithiocarbazates were rarely described in the literature, thus a synthesis route was established. Due to the elaborate synthesis, the branched dithiocarbazates (containing an N-aminopiperazine) were simplified, but the resulting branched dithiocarbamates (containing a 4-aminopiperidine) were considerably less active. Taken together, dithiocarbazate-containing compounds with an in vitro antischistosomal activity of 5 µM were obtained.


Asunto(s)
Esquistosomiasis , Esquistosomicidas , Humanos , Animales , Esquistosomicidas/farmacología , Relación Estructura-Actividad , Esquistosomiasis/tratamiento farmacológico , Praziquantel/farmacología , Praziquantel/uso terapéutico , Schistosoma mansoni
10.
Eur J Med Chem ; 242: 114641, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027862

RESUMEN

Schistosomiasis is a neglected tropical disease with more than 200 million new infections per year. It is caused by parasites of the genus Schistosoma and can lead to death if left untreated. Currently, only two drugs are available to combat schistosomiasis: praziquantel and, to a limited extent, oxamniquine. However, the intensive use of these two drugs leads to an increased probability of the emergence of resistance. Thus, the search for new active substances and their targeted development are mandatory. In this study the substance class of "dithiocarbamates" and their potential as antischistosomal agents is highlighted. These compounds are derived from the basic structure of the human aldehyde dehydrogenase inhibitor disulfiram (tetraethylthiuram disulfide, DSF) and its metabolites. Our compounds revealed promising activity (in vitro) against adults of Schistosoma mansoni, such as the reduction of egg production, pairing stability, vitality, and motility. Moreover, tegument damage as well as gut dilatations or even the death of the parasite were observed. We performed detailed structure-activity relationship studies on both sides of the dithiocarbamate core leading to a library of approximately 300 derivatives (116 derivatives shown here). Starting with 100 µm we improved antischistosomal activity down to 25 µm by substitution of the single bonded sulfur atom for example with different benzyl moieties and integration of the two residues on the nitrogen atom into a cyclic structure like piperazine. Its derivatization at the 4-nitrogen with a sulfonyl group or an acyl group led to the most active derivatives of this study which were active at 10 µm. In light of this SAR study, we identified 17 derivatives that significantly reduced motility and induced several other phenotypes at 25 µm, and importantly five of them have antischistosomal activity also at 10 µm. These derivatives were found to be non-cytotoxic in two human cell lines at 100 µm. Therefore, dithiocarbamates seem to be interesting new candidates for further antischistosomal drug development.


Asunto(s)
Esquistosomiasis , Esquistosomicidas , Adulto , Aldehído Deshidrogenasa/farmacología , Animales , Disulfiram/farmacología , Humanos , Enfermedades Desatendidas , Nitrógeno/farmacología , Oxamniquina/química , Oxamniquina/farmacología , Piperazinas/farmacología , Praziquantel/farmacología , Schistosoma mansoni , Esquistosomiasis/tratamiento farmacológico , Esquistosomicidas/farmacología , Azufre/farmacología
11.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215232

RESUMEN

Schistosomiasis is a neglected tropical disease caused by blood flukes of the genus Schistosoma. In silico screenings of compounds for the identification of novel anti-parasitic drug candidates have received considerable attention in recent years, including the screening of natural compounds. For the first time, we investigated molecules from insects, a rather neglected source in drug discovery, in an in silico screening approach to find novel antischistosomal compounds. Based on the Dictionary of Natural Products (DNP), we created a library of 1327 insect compounds suitable for molecular docking. A structure-based virtual screening against the crystal structure of a known druggable target in Schistosoma mansoni, the thioredoxin glutathione reductase (SmTGR), was performed. The top ten compounds predominantly originated from beetles and were predicted to interact particularly with amino acids in the doorstop pocket of SmTGR. For one compound from a jewel beetle, buprestin H, we tested and confirmed antischistosomal activity against adult and juvenile parasites in vitro. At concentrations with anti-parasitic activity, we could also exclude any unspecific cytotoxic activity against human HepG2 cells. This study highlights the potential of insect molecules for the identification of novel antischistosomal compounds. Our library of insect-derived molecules could serve not only as basis for future in silico screenings against additional target proteins of schistosomes, but also of other parasites.

12.
Molecules ; 27(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35209202

RESUMEN

Schistosomiasis is a neglected tropical disease affecting more than 200 million people worldwide. Chemotherapy relies on one single drug, praziquantel, which is safe but ineffective at killing larval stages of this parasite. Furthermore, concerns have been expressed about the rise in resistance against this drug. In the absence of an antischistosomal vaccine, it is, therefore, necessary to develop new drugs against the different species of schistosomes. Protein kinases are important molecules involved in key cellular processes such as signaling, growth, and differentiation. The kinome of schistosomes has been studied and the suitability of schistosomal protein kinases as targets demonstrated by RNA interference studies. Although protein kinase inhibitors are mostly used in cancer therapy, e.g., for the treatment of chronic myeloid leukemia or melanoma, they are now being increasingly explored for the treatment of non-oncological conditions, including schistosomiasis. Here, we discuss the various approaches including screening of natural and synthetic compounds, de novo drug development, and drug repurposing in the context of the search for protein kinase inhibitors against schistosomiasis. We discuss the status quo of the development of kinase inhibitors against schistosomal serine/threonine kinases such as polo-like kinases (PLKs) and mitogen-activated protein kinases (MAP kinases), as well as protein tyrosine kinases (PTKs).


Asunto(s)
Antihelmínticos/uso terapéutico , Reposicionamiento de Medicamentos , Proteínas del Helminto/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Schistosoma/enzimología , Esquistosomiasis , Animales , Proteínas del Helminto/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis/enzimología
13.
Parasitol Res ; 121(4): 1145-1153, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35067744

RESUMEN

Understanding drug penetration, distribution, and metabolization is fundamental for understanding drug efficacy. This also accounts for parasites during antiparasitic treatment. Recently, we established matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in blood flukes and liver flukes. This label-free technique is capable of visualizing the molecular distribution of endogenous and exogenous molecules, such as drug compounds. Here, we conducted atmospheric-pressure scanning microprobe MALDI MSI (AP-SMALDI MSI) of tissue sections of adult Fasciola hepatica that have been treated in vitro with 100 µM of triclabendazole (TCBZ), the drug of choice for treatment of fasciolosis, and its main metabolite triclabendazole sulfoxide (TCBZ-SO). Measurements covered an m/z mass range of 250-1,000 and provided a high spatial resolution using a pixel size of 10 µm. To support the interpretation of drug distribution, we first identified endogenous lipids that mark characteristic tissues such as the gastrodermis, the tegument, and the parenchyma. The obtained results suggested an early tegumental route of TCBZ uptake within 20 min, followed by spreading throughout the parasite after 4 h, and an even distribution in most tissues after 12 h. This coincided with a strong reduction of parasite vitality. TCBZ-SO treatment demonstrated the accumulation of this metabolite in the same tissues as the parent drug compound. These data demonstrate the auspicious potential of MALDI MSI to visualize uptake and distribution patterns of drugs or drug-candidate compounds in parasites, which might contribute to preclinical drug discovery in liver fluke research and beyond.


Asunto(s)
Antihelmínticos , Fasciola hepatica , Fascioliasis , Navegación Espacial , Animales , Antihelmínticos/uso terapéutico , Bencimidazoles , Fasciola hepatica/metabolismo , Fascioliasis/tratamiento farmacológico , Fascioliasis/parasitología , Espectrometría de Masas
14.
Int J Parasitol ; 52(4): 211-215, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34838573

RESUMEN

Schistosomiasis, caused by schistosome parasites, is a neglected tropical disease affecting humans and animals. There is no vaccine available yet, and fear of upcoming resistance against the only widely used drug, praziquantel, is omnipresent. Previously, we showed that imatinib (Gleevec), an anticancer drug, affected schistosome physiology and caused the death of adult Schistosoma mansoni in vitro. Here, we present the first known evidence that one effect of imatinib is the induction of autophagy in S. mansoni. Furthermore, worms co-treated with imatinib and bafilomycin A1, a late-phase autophagy inhibitor, reversed imatinib-induced autophagy and its antischistosomal effects as revealed by phenotypic and molecular analyses.


Asunto(s)
Antineoplásicos , Esquistosomiasis mansoni , Animales , Antineoplásicos/farmacología , Autofagia , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Praziquantel/farmacología , Praziquantel/uso terapéutico , Schistosoma mansoni , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología
15.
Arch Pharm (Weinheim) ; 354(12): e2100259, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34523746

RESUMEN

Schistosomiasis is a neglected tropical disease caused by blood flukes of the genus Schistosoma and causes severe morbidity in infected patients. In 2018, 290.8 million people required treatment, and 200,000 deaths are reported per year. Treatment of this disease depends on a single drug, praziquantel (PZQ). However, in the past few years, reduced sensitivity of the parasites toward PZQ has been reported. Therefore, there is an urgent need for new drugs against this disease. In the past few years, we have focused on a new substance class called biaryl alkyl carboxylic acid derivatives, which showed promising antischistosomal activity in vitro. Structure-activity relationship (SAR) studies of the carboxylic acid moiety led to three promising carboxylic amides (morpholine, thiomorpholine, and methyl sulfonyl piperazine) with an antischistosomal activity down to 10 µM (morpholine derivative) and no cytotoxicity up to 100 µM. Here, we show our continued work on this substance class. We investigated, in extended SAR studies, whether modification of the linker and the thiophene ring could improve the antischistosomal activity. We found that the exchange of the alkyl linker by a pentadienyl or benzyl linker was tolerated and led to similar antischistosomal effects, whereas the exchange of the thiophene ring was not tolerated. Our data suggest that the thiophene ring is important for the antischistosomal activity of this compound class.


Asunto(s)
Ácidos Carboxílicos/farmacología , Schistosoma/efectos de los fármacos , Esquistosomicidas/farmacología , Amidas/síntesis química , Amidas/química , Amidas/farmacología , Animales , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/química , Femenino , Masculino , Esquistosomiasis/tratamiento farmacológico , Esquistosomicidas/síntesis química , Esquistosomicidas/química , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química , Tiofenos/farmacología
16.
Anal Bioanal Chem ; 413(10): 2755-2766, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33723627

RESUMEN

Schistosoma mansoni is a parasitic flatworm causing schistosomiasis, an infectious disease affecting several hundred million people worldwide. Schistosomes live dioeciously, and upon pairing with the male, the female starts massive egg production, which causes pathology. Praziquantel (PZQ) is the only drug used, but it has an inherent risk of resistance development. Therefore, alternatives are needed. In the context of drug repurposing, the cancer drug imatinib was tested, showing high efficacy against S. mansoni in vitro. Besides the gonads, imatinib mainly affected the integrity of the intestine in males and females. In this study, we investigated the potential uptake and distribution of imatinib in adult schistosomes including its distribution kinetics. To this end, we applied for the first time atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) for drug imaging in paired S. mansoni. Our results indicate that imatinib was present in the esophagus and intestine of the male as early as 20 min after in vitro exposure, suggesting an oral uptake route. After one hour, the drug was also found inside the paired female. The detection of the main metabolite, N-desmethyl imatinib, indicated metabolization of the drug. Additionally, a marker signal for the female ovary was successfully applied to facilitate further conclusions regarding organ tropism of imatinib. Our results demonstrate that AP-SMALDI MSI is a useful method to study the uptake, tissue distribution, and metabolization of imatinib in S. mansoni. The results suggest using AP-SMALDI MSI also for investigating other antiparasitic compounds and their metabolites in schistosomes and other parasites.


Asunto(s)
Antineoplásicos/análisis , Antiparasitarios/análisis , Mesilato de Imatinib/análisis , Schistosoma mansoni/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Antineoplásicos/farmacocinética , Antiparasitarios/farmacocinética , Reposicionamiento de Medicamentos , Femenino , Masculino , Mesocricetus , Schistosoma mansoni/citología , Schistosoma mansoni/metabolismo , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología
17.
Int J Parasitol ; 51(7): 571-585, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33713647

RESUMEN

Schistosomiasis is a disease of global importance caused by parasitic flatworms, schistosomes, which cause pathogenicity through eggs laid by the female worm inside the host's blood vessels. Maintenance of cellular homeostasis is crucial for parasites, as for other organisms, and is quite likely important for schistosome reproduction and vitality. We hypothesize a role for autophagy in these processes, an evolutionarily conserved and essential cellular degradation pathway. Here, for the first known time, we shed light on the autophagy machinery and its involvement in pairing-dependent processes, vitality and reproduction of Schistosoma mansoni. We identified autophagy genes by in silico analyses and determined the influence of in vitro culture on the transcriptional expression in male and female worms using quantitative real-time PCR. Among the identified autophagy genes were Beclin, Ambra1, Vps34, DRAM, DAP1, and LC3B, of which some showed a sex-dependent expression. Specifically, the death-associated protein DAP1 was significantly more highly expressed in females compared with males, while for the damage-regulated autophagy modulator DRAM it was the opposite. Furthermore, in-vitro culture significantly changed the transcript expression level of DAP1 in female worms. Next, worms were treated with an autophagy inducer (rapamycin) or inhibitors (bafilomycin A1, wortmannin and spautin-1) to evaluate effects on autophagy protein expression, worm vitality, and reproduction. The conversion of the key autophagy protein LC3B, a marker for autophagic activity, was increased by rapamycin and blocked by bafilomycin. All inhibitors affected worm fitness, egg production, and negatively affected the morphology of gonads and intestine. In summary, autophagy genes in S. mansoni show an interesting sex-dependent expression pattern and manipulation of autophagy in S. mansoni by inhibitors induced detrimental effects, which encourages subsequent studies to identify antischistosomal targets within the autophagy machinery.


Asunto(s)
Schistosoma mansoni , Esquistosomiasis mansoni , Animales , Autofagia , Femenino , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Schistosoma mansoni/genética
18.
Antibiotics (Basel) ; 9(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019687

RESUMEN

Helminths such as the blood fluke Schistosoma mansoni represent a major global health challenge due to limited availability of drugs. Most anthelminthic drug candidates are derived from plants, whereas insect-derived compounds have received little attention. This includes venom from assassin bugs, which contains numerous bioactive compounds. Here, we investigated whether venom from the European predatory assassin bug Rhynocoris iracundus has antischistosomal activity. Venom concentrations of 10-50 µg/mL inhibited the motility and pairing of S. mansoni adult worms in vitro and their capacity to produce eggs. We used EdU-proliferation assays to measure the effect of venom against parasite stem cells, which are essential for survival and reproduction. We found that venom depleted proliferating stem cells in different tissues of the male parasite, including neoblasts in the parenchyma and gonadal stem cells. Certain insect venoms are known to lyse eukaryotic cells, thus limiting their therapeutic potential. We therefore carried out hemolytic activity assays using porcine red blood cells, revealing that the venom had no significant effect at a concentration of 43 µg/mL. The observed anthelminthic activity and absence of hemolytic side effects suggest that the components of R. iracundus venom should be investigated in more detail as potential antischistosomal leads.

19.
Front Vet Sci ; 7: 611270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33409299

RESUMEN

Protein kinases have been discussed as promising druggable targets in various parasitic helminths. New drugs are also needed for control of fascioliasis, a food-borne trematode infection and worldwide spread zoonosis, caused by the liver fluke Fasciola hepatica and related species. In this study, we intended to move protein kinases more into the spotlight of Fasciola drug research and characterized the fasciolicidal activity of two small-molecule inhibitors from human cancer research: the Abelson tyrosine kinase (ABL-TK) inhibitor imatinib and the polo-like 1 (PLK1) inhibitor BI2536. BI2536 reduced viability of 4-week-old immature flukes in vitro, while adult worms showed a blockade of egg production. Together with a significantly higher transcriptional expression of PLK1 in adult compared to immature worms, this argues for a role of PLK1 in fluke reproduction. Both fluke stages expressed ABL1-TK transcripts at similar high levels and were affected by imatinib. To study the uptake kinetic and tissue distribution of imatinib in F. hepatica, we applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) for the first time in this parasite. Drug imaging revealed the accumulation of imatinib in different fluke tissues from 20 min to 12 h of exposure. Furthermore, we show that imatinib is metabolized to N-desmethyl imatinib by F. hepatica, a bioactive metabolite also found in humans. Besides the vitellarium, gastrodermal tissue showed strong signal intensities. In situ hybridization demonstrated the gastrodermal presence of abl1 transcripts. Finally, we assessed transcriptional changes of physiologically important genes in imatinib-treated flukes. Moderately increased transcript levels of a gene encoding a multidrug resistance protein were detected, which may reflect an attempt to defend against imatinib. Increased expression levels of the cell cycle dependently expressed histone h2b and of two genes encoding superoxide dismutases (SODs) were also observed. In summary, our pilot study demonstrated cross-stage activity of imatinib but not BI2536 against immature and adult F. hepatica in vitro; a fast incorporation of imatinib within minutes, probably via the oral route; and imatinib-induced expression changes of physiologically relevant genes. We conclude that kinases are worth analyzing in more detail to evaluate the potential as therapeutic targets in F. hepatica.

20.
Parasitology ; 147(8): 865-872, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31840628

RESUMEN

Schistosomiasis is an acute and chronic disease caused by parasitic worms of the genus Schistosoma. Treatment is solely dependent on praziquantel. In the face of the worldwide dimension, projects have been initiated to develop new chemotherapies. Due to their proven druggability, G protein-coupled receptors (GPCRs) are promising targets for anthelmintics. However, to identify candidate receptors, a deeper understanding of GPCR signalling in schistosome biology is essential. Comparative transcriptomics of paired and unpaired worms and their gonads revealed 59 differentially regulated GPCR-coding genes putatively involved in neuronal processes. In general, the diversity among GPCRs and their integral membrane topology make it difficult to characterize and deorphanize these receptors. To overcome existing limitations, we performed a pilot approach and utilized the innovative Membrane-Anchored Ligand And Receptor yeast two-hybrid system (MALAR-Y2H) to associate potential neuropeptide ligands with their cognate receptors. Here, we demonstrated the ability to express full-length GPCRs of Schistosoma mansoni in a heterologous yeast-based system. Additionally, we localized GPCRs and chimeras of neuropeptides fused to the WBP1 transmembrane domain of yeast to the plasma membrane of yeast cells. Reporter gene assays indicated ligand-receptor binding, which allowed us to identify certain neuropeptides as potential ligands for two GPCRs, which had been found before to be differentially expressed in schistosomes in a pairing-dependent manner. Thus, the MALAR-Y2H system appears suitable to unravel schistosome GPCR-ligand interactions. Besides its relevance for understanding schistosome biology, identifying and characterizing GPCR-ligand interaction will also contribute to applied research aspects.


Asunto(s)
Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G , Schistosoma mansoni , Técnicas del Sistema de Dos Híbridos , Animales , Proteínas de Unión al GTP/metabolismo , Humanos , Unión Proteica , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Transformación Genética , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...