Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(6): 2074-2080, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36862532

RESUMEN

Terahertz (THz) radiation is a valuable tool to investigate the electronic properties of lead halide perovskites (LHPs). However, attaining high-resolution information remains elusive, as the diffraction-limited spatial resolution (∼300 µm) of conventional THz methods prevents a direct analysis of microscopic effects. Here, we employ THz scattering scanning near-field optical microscopy (THz-sSNOM) for nanoscale imaging of cesium lead bromide (CsPbBr3) thin films down to the single grain level at 600 GHz. Adopting a scattering model, we are able to derive the local THz nanoscale conductivity in a contact-free fashion. Increased THz near-field signals at CsPbBr3 grain boundaries complemented by correlative transmission electron microscopy-energy-dispersive X-ray spectroscopy elemental analysis point to the formation of halide vacancies (VBr) and Pb-Pb bonds, which induce charge carrier trapping and can lead to nonradiative recombination. Our study establishes THz-sSNOM as a powerful THz nanoscale analysis platform for thin-film semiconductors such as LHPs.

2.
Adv Mater ; 35(8): e2208477, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36461165

RESUMEN

Oxides that exhibit an insulator-metal transition can be used to fabricate energy-efficient relaxation oscillators for use in hardware-based neural networks but there are very few oxides with transition temperatures above room temperature. Here the structural, electrical, and thermal properties of V3 O5 thin films and their application as the functional oxide in metal/oxide/metal relaxation oscillators are reported. The V3 O5 devices show electroforming-free volatile threshold switching and negative differential resistance (NDR) with stable (<3% variation) cycle-to-cycle operation. The physical mechanisms underpinning these characteristics are investigated using a combination of electrical measurements, in situ thermal imaging, and device modeling. This shows that conduction is confined to a narrow filamentary path due to self-confinement of the current distribution and that the NDR response is initiated at temperatures well below the insulator-metal transition temperature where it is dominated by the temperature-dependent conductivity of the insulating phase. Finally, the dynamics of individual and coupled V3 O5 -based relaxation oscillators is reported, showing that capacitively coupled devices exhibit rich non-linear dynamics, including frequency and phase synchronization. These results establish V3 O5 as a new functional material for volatile threshold switching and advance the development of robust solid-state neurons for neuromorphic computing.

3.
ACS Appl Mater Interfaces ; 13(24): 28514-28520, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34111924

RESUMEN

Alternate current electroluminescent (ACEL) devices provide a range of interesting properties, such as facile large-area processability, mechanical flexibility, and outstanding resilience, when compared with other large-area light-emitting technologies. To widen the scope of possible applications for ACEL devices, color tunability and white light emission are desirable. Here, we introduce a novel three-terminal device architecture based on two monolithically stacked ACEL devices (e.g., orange and blue) that allows for color tunability via independent operation of the subdevices. The tandem devices comprise semitransparent bottom and top electrodes based on networks of silver nanowires, which endow the tandem ACEL device with bifacial Janus-type emission. We provide a detailed analysis of the sources of optical losses in single and tandem ACEL devices. Our novel device concept enables novel facets of applications for ACEL in signage and lighting.

4.
Chem Commun (Camb) ; 56(89): 13752-13755, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33063069

RESUMEN

This paper demonstrates a carbene stabilized precursor [Cu(tBuNHC)(hmds)] with suitable volatility, reactivity and thermal stability, that enables the spatial plasma-enhanced atomic layer deposition (APP-ALD) of copper thin films at atmospheric pressure. The resulting conductive and pure copper layers were thoroughly analysed and a comparison of precursor and process with the previously reported silver analogue [Ag(tBuNHC)(hmds)] revealed interesting similarities and notable differences in precursor chemistry and growth characteristics. This first report of APP-ALD grown copper layers is an important starting point for high throughput, low-cost manufacturing of copper films for nano- and optoelectronic devices.

5.
Opt Lett ; 45(8): 2431-2434, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287251

RESUMEN

We measure both nonlinear absorption and nonlinear refraction in a ${{\rm CH}_3}{{\rm NH}_3}{{\rm PbBr}_3}$CH3NH3PbBr3 single crystal using the Z-scan technique with femtosecond laser pulses. At 1000 nm, we obtain values of 5.2 cm/GW and ${+}{9.5} \cdot {{10}^{ - 14}}\;{{\rm cm}^2}/{\rm W}$+9.5⋅10-14cm2/W for nonlinear absorption and nonlinear refraction, respectively. The sign and magnitude of the observed refractive nonlinearity are reproduced well by the two-band model. Our results suggest that the large nonlinear refractive index measured in perovskite nanostructures cannot be explained by an intrinsically high bound-electronic nonlinear refractive index in this emerging material class but is possibly caused by free carriers or quantum confinement effects.

6.
Adv Mater ; 31(39): e1903717, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31402527

RESUMEN

Cesium lead halide perovskites are of interest for light-emitting diodes and lasers. So far, thin-films of CsPbX3 have typically afforded very low photoluminescence quantum yields (PL-QY < 20%) and amplified spontaneous emission (ASE) only at cryogenic temperatures, as defect related nonradiative recombination dominated at room temperature (RT). There is a current belief that, for efficient light emission from lead halide perovskites at RT, the charge carriers/excitons need to be confined on the nanometer scale, like in CsPbX3 nanoparticles (NPs). Here, thin films of cesium lead bromide, which show a high PL-QY of 68% and low-threshold ASE at RT, are presented. As-deposited layers are recrystallized by thermal imprint, which results in continuous films (100% coverage of the substrate), composed of large crystals with micrometer lateral extension. Using these layers, the first cesium lead bromide thin-film distributed feedback and vertical cavity surface emitting lasers with ultralow threshold at RT that do not rely on the use of NPs are demonstrated. It is foreseen that these results will have a broader impact beyond perovskite lasers and will advise a revision of the paradigm that efficient light emission from CsPbX3 perovskites can only be achieved with NPs.

7.
J Phys Chem Lett ; 10(11): 3019-3023, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31117695

RESUMEN

Local thermal conductivity, thermal diffusivity, and volumetric heat capacity of all-inorganic halide perovskite thin films are mapped simultaneously and with highest spatial resolution for the first time. These various thermal properties are detected by a scanning near-field thermal microscope operated at two different frequencies simultaneously. We apply this technique to analyze the thermal properties of halide perovskites on the nanoscale. In addition to an ultralow thermal conductivity of 0.43 ± 0.03 and 0.33 ± 0.02 W/(m·K), a low thermal diffusivity of 0.3 ± 0.1 mm2/s and a small heat capacity of 0.29 ± 0.9 and 0.18 ± 0.6 J/(g·K) are obtained for CsPbBr3 and CsPb2Br5 films, respectively. The findings of our thermal microscopy are of great general importance for the thermal design of thin-film devices based on halide perovskites, while the measurement technique itself is generally applicable for other thin-film optoelectronic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...