Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 13(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34959754

RESUMEN

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Asunto(s)
Tejido Adiposo/metabolismo , Fibras de la Dieta/administración & dosificación , Metabolismo Energético/efectos de los fármacos , Músculo Esquelético/metabolismo , Hipernutrición/metabolismo , Aminoácidos/metabolismo , Animales , Pan , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/metabolismo , Heces/química , Femenino , Alimentos Fermentados , Glucosa/metabolismo , Incretinas/metabolismo , Intestinos/metabolismo , Ácido Láctico/metabolismo , Porcinos , Porcinos Enanos , Urea/metabolismo
2.
Food Chem ; 338: 128020, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932087

RESUMEN

Plant-based protein foods are increasingly common, but data on their nutritional protein quality are scarce. This study evaluated it for seitan (wheat-based food), tofu (soya-based food), soya milk, and a pea emulsion. The true ileal digestibility (TID) of their amino acids was determined in minipigs, to calculate the digestible indispensable amino acid score (DIAAS). The TID of the proteins was high and not significantly different between the foods tested: 97% for seitan, 95% for tofu, 92% for soya milk and 94% for pea emulsion. There were only minor differences in individual amino acid TIDs. DIAAS ranking was thus essentially driven by the amino acid composition of the food: soya-based food > pea emulsion > seitan. Nevertheless, the lower TID of sulphur-containing amino acids in tofu than in soya milk induced a significant decrease in DIAAS (from 117% to 97%), highlighting the importance of the matrix effect on nutritional protein quality.


Asunto(s)
Aminoácidos/análisis , Proteínas en la Dieta/farmacocinética , Íleon/metabolismo , Proteínas de Plantas/farmacocinética , Aminoácidos/metabolismo , Aminoácidos Esenciales/análisis , Aminoácidos Esenciales/metabolismo , Animales , Digestión , Íleon/efectos de los fármacos , Valor Nutritivo , Proteínas de Plantas/metabolismo , Alimentos de Soja , Leche de Soja , Glycine max/química , Porcinos , Porcinos Enanos , Triticum/química
3.
J Ren Nutr ; 31(2): 164-176, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32723525

RESUMEN

OBJECTIVES: Protein-energy wasting is a risk factor for mortality and morbidity in hemodialysis patients (HD patients). Food intake could be modified by HD-related changes in the food reward system (i.e., liking and wanting of specific macronutrients). In HD patients on days with and without dialysis, we evaluated (1) the reward system for protein-, fat-, and carbohydrate-rich foods, plasma hormones, and metabolite changes; and (2) the spontaneous ad libitum intake of macronutrients. (DESIGN AND) METHODS: Twenty-four HD patients evaluated their liking and wanting of macronutrients at 7:30 AM and 11:30 AM on a day with and a day without dialysis. Concentrations of hormones and plasma amino acids were determined. An additional 18 HD patients ate what they wanted from a buffet lunch comprising 8 dishes on a day with and a day without dialysis. Healthy subjects, age-, sex-, and body mass index-matched, served as controls. RESULTS: At 11:30 AM, wanting for protein-rich foods was higher on the day with than on the day without dialysis (P < .01), bringing wanting levels close to those of healthy subjects. This increase correlated with changes in the concentrations of plasma amino acids (P < .01). HD patients ate more protein from the buffet on the day with than on the day without dialysis (P < .01) and more than healthy subjects (P < .01). CONCLUSIONS: In HD patients, wanting and spontaneous intake of protein-rich foods increase immediately after dialysis. This increase correlated with decreased concentrations of plasma amino acids. Thus, in clinical practice, protein-rich foods should be recommended during and after dialysis in patients with protein-energy wasting.


Asunto(s)
Diálisis Renal , Insuficiencia Renal Crónica , Índice de Masa Corporal , Ingestión de Energía , Humanos , Insuficiencia Renal Crónica/terapia , Recompensa
4.
J Nutr Biochem ; 65: 72-82, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30654277

RESUMEN

Obesity induced by overfeeding ultimately can lead to nonalcoholic fatty liver disease, whereas dietary fiber consumption is known to have a beneficial effect. We aimed to determine if a supplementation of a mix of fibers (inulin, resistant starch and pectin) could limit or alleviate overfeeding-induced metabolic perturbations. Twenty female minipigs were fed with a control diet (C) or an enriched fat/sucrose diet supplemented (O + F) or not (O) with fibers. Between 0 and 56 days of overfeeding, insulin (+88%), HOMA (+102%), cholesterol (+45%) and lactate (+63%) were increased, without any beneficial effect of fibers supplementation. However, fibers supplementation limited body weight gain (vs. O, -15% at D56) and the accumulation of hepatic lipids droplets induced by overfeeding. This could be explained by a decreased lipids transport potential (-50% FABP1 mRNA, O + F vs. O) inducing a down-regulation of regulatory elements of lipids metabolism / lipogenesis (-36% SREBP1c mRNA, O + F vs. O) but not to an increased oxidation (O + F not different from O and C for proteins and mRNA measured). Glucose metabolism was also differentially regulated by fibers supplementation, with an increased net hepatic release of glucose in the fasted state (diet × time effect, P<.05 at D56) that can be explained partially by a possible increased glycogen synthesis in the fed state (+82% GYS2 protein, O + F vs. O, P=.09). The direct role of short chain fatty acids on gluconeogenesis stimulation is questioned, with probably a short-term impact (D14) but no effect on a long-term (D56) basis.


Asunto(s)
Fibras de la Dieta/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hipernutrición/dietoterapia , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Regulación de la Expresión Génica/efectos de los fármacos , Inulina/farmacología , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Hipernutrición/etiología , Pectinas/farmacología , Proteínas/genética , Proteínas/metabolismo , Sacarosa/efectos adversos , Porcinos , Porcinos Enanos
5.
Nutrients ; 10(11)2018 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-30400385

RESUMEN

Pulses display nutritional benefits and are recommended in sustainable diets. Indeed, they are rich in proteins and fibers, and can contain variable amounts of micronutrients. However, pulses also contain bioactive compounds such as phytates, saponins, or polyphenols/tannins that can exhibit ambivalent nutritional properties depending on their amount in the diet. We characterized the nutritional composition and bioactive compound content of five types of prepared pulses frequently consumed in France (kidney beans, white beans, chickpeas, brown and green lentils, flageolets), and specifically compared the effects of household cooking vs. canning on the composition of pulses that can be consumed one way or the other. The contents in macro-, micronutrients, and bioactive compounds highly varied from one pulse to another (i.e., 6.9 to 9.7 g/100 g of cooked product for proteins, 4.6 to 818.9 µg/100 g for lutein or 15.0 to 284.3 mg/100 g for polyphenols). The preparation method was a key factor governing pulse final nutritional composition in hydrophilic compounds, depending on pulse species. Canning led to a greater decrease in proteins, total dietary fibers, magnesium or phytate contents compared to household cooking (i.e., -30%, -44%, -33% and -38%, p < 0.05, respectively, in kidney beans). As canned pulses are easy to use for consumers, additional research is needed to improve their transformation process to further optimize their nutritional quality.


Asunto(s)
Culinaria , Fabaceae/química , Valor Nutritivo , Grasas de la Dieta/análisis , Fibras de la Dieta/análisis , Análisis de los Alimentos , Alimentos en Conserva , Francia , Micronutrientes/administración & dosificación , Ácido Fítico/análisis , Proteínas de Vegetales Comestibles/análisis , Polifenoles/análisis , Semillas/química , Taninos/análisis
6.
Food Chem ; 240: 314-322, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28946277

RESUMEN

Fruit and vegetables (F&V) polyphenols have numerous positive health effects, ascribed either to their antioxidant activity within the gastrointestinal tract (GIT) or to bioactivity of their absorbed metabolites. The effect of the F&V matrix on the gastrointestinal bioaccessibility of polyphenols was investigated along with its possible interaction with protein digestion. Minipigs were fed a complete meal with either cubed F&V (apple, plum, artichoke) added, or the corresponding phenolic extract (PE). Gastric and ileal chymes were kinetically collected over the postprandial period. The overall polyphenol bioaccessibility in the stomach was found to be 1.5% and 3.1% after F&V and PE consumption, respectively. The lower release rate from artichoke than from apple showed evidence of a plant effect. Flavanol monomers and glucoside conjugates were not recovered in the ileum in agreement with their absorption in the upper GIT. Interestingly, PE, but not F&V, significantly decreased the speed and efficiency of dietary protein digestion.


Asunto(s)
Digestión , Frutas , Verduras , Proteínas en la Dieta , Polifenoles
7.
PLoS One ; 12(10): e0186204, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29045496

RESUMEN

BACKGROUND: Muscle atrophy has been explained by an anabolic resistance following food intake and an increase of dietary protein intake is recommended. To be optimal, a dietary protein has to be effective not only to initiate but also to prolong a muscle anabolic response in a catabolic state. To our knowledge, whether or not a dairy or a dairy/plant protein blend fulfills these criterions is unknown in a muscle wasting situation. OBJECTIVE: Our aim was, in a control and a catabolic state, to measure continuously muscle anabolism in term of intensity and duration in response to a meal containing casein (CAS), whey (WHEY) or a whey/ plant protein blend (BLEND) and to evaluate the best protein source to elicit the best post prandial anabolism according to the physio-pathological state. METHODS: Adult male Yucatan mini pigs were infused with U-13C-Phenylalanine and fed either CAS, WHEY or BLEND. A catabolic state was induced by a glucocorticoid treatment for 8 days (DEX). Muscle protein synthesis, proteolysis and balance were measured with the hind limb arterio-venous differences technique. Repeated time variance analysis were used to assess significant differences. RESULTS: In a catabolic situation, whey proteins were able to initiate muscle anabolism which remained transient in contrast to the stimulated muscle protein accretion with WHEY, CAS or BLEND in healthy conditions. Despite the same leucine intake compared to WHEY, BLEND did not restore a positive protein balance in DEX animals. CONCLUSIONS: Even with WHEY, the duration of the anabolic response was not optimal and has to be improved in a catabolic state. The use of BLEND remained of lower efficiency even at same leucine intake than whey.


Asunto(s)
Anabolizantes/administración & dosificación , Caseínas/administración & dosificación , Leucina/metabolismo , Atrofia Muscular/dietoterapia , Proteínas de Vegetales Comestibles/administración & dosificación , Animales , Ingestión de Alimentos , Glucocorticoides/administración & dosificación , Metabolismo/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Periodo Posprandial/efectos de los fármacos , Porcinos , Porcinos Enanos , Suero Lácteo/administración & dosificación
8.
Am J Clin Nutr ; 106(5): 1257-1266, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28903955

RESUMEN

Background: Meat cooking conditions in in vitro and in vivo models have been shown to influence the rate of protein digestion, which is known to affect postprandial protein metabolism in the elderly.Objective: The present study was conducted to demonstrate the effect of cooking conditions on meat protein assimilation in the elderly. We used a single-meal protocol to assess the meat protein absorption rate and estimate postprandial meat protein utilization in elderly subjects.Design: The study recruited 10 elderly volunteers aged 70-82 y. Each received, on 2 separate occasions, a test meal exclusively composed of intrinsically 15N-labeled bovine meat (30 g protein), cooked at 55°C for 5 min [rare meat (RM)] or at 90°C for 30 min [fully cooked meat (FCM)], and minced. Whole-body fluxes of leucine, before and after the meal, were determined with the use of a [1-13C]leucine intravenous infusion. Meat protein absorption was recorded with the use of 15N enrichment of amino acids.Results: Postprandial time course observations showed a lower concentration in the plasma of indispensable amino acids (P < 0.01), a lower entry rate of meat leucine in the plasma (P < 0.01), and a lower contribution of meat nitrogen to plasma amino acid nitrogen (P < 0.001), evidencing lower peripheral bioavailability of meat amino acids with RM than with FCM. This was associated with decreased postprandial whole-body protein synthesis with RM than with FCM (40% compared with 56% of leucine intake, respectively; P < 0.01).Conclusions: Whereas meat cooking conditions have little effect on postprandial protein utilization in young adults, the present work showed that the bioavailability and assimilation of meat amino acids in the elderly is lower when meat is poorly cooked. In view to preventing sarcopenia, elderly subjects should be advised to favor the consumption of well-cooked meat. This trial was registered at clinicaltrials.gov as NCT02157805.


Asunto(s)
Culinaria , Proteínas en la Dieta/administración & dosificación , Carne Roja , Anciano , Anciano de 80 o más Años , Aminoácidos/sangre , Disponibilidad Biológica , Índice de Masa Corporal , Estudios Cruzados , Humanos , Leucina/sangre , Masculino , Nitrógeno/metabolismo , Periodo Posprandial
9.
PLoS One ; 8(4): e61252, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593443

RESUMEN

The speed of protein digestion impacts on postprandial protein anabolism. After exercise or in the elderly, fast proteins stimulate protein synthesis more efficiently than slow proteins. It has been shown that meat might be a source of fast proteins. However, cooking temperature, acting on the macrostructure and microstructure of the meat could affect both the speed, and efficiency, of protein digestion. This study aims to evaluate, in vivo, the effect of meat cooking on digestion parameters, in the context of a complete meal. Six minipigs fitted with an ileal cannula and an arterial catheter were used. In order to measure the true ileal digestibility, tested meat was obtained from a calf, the muscle proteins of which were intrinsically labelled with (15)N-amino acids. Three cooking temperatures (60, 75 and 95°C; core temperature for 30 min), and three levels of intake (1, 1.45, and 1.90 g protein/kg body weight) were tested. Following meat ingestion, ileal digesta and arterial blood were collected over a 9-h period. The speed of digestion, evaluated from the kinetics of amino acid appearance in blood within the first 3 h, was greater for the cooking temperature of 75°C, than for 60 or 95°C. The true ileal digestibility, which averaged 95%, was not affected by cooking temperature or by the level of meat intake. The amino acid composition of the digesta flowing at the ileum was not affected by cooking temperature. These results show that cooking temperature can modulate the speed of meat protein digestion, without affecting the efficiency of the small intestinal digestion, and consequently the entry of meat protein residues into the colon.


Asunto(s)
Colon/metabolismo , Culinaria , Proteínas en la Dieta/metabolismo , Digestión/fisiología , Ingestión de Alimentos/fisiología , Carne , Porcinos Enanos/metabolismo , Aminoácidos/metabolismo , Animales , Femenino , Íleon/metabolismo , Cinética , Nitrógeno/metabolismo , Periodo Posprandial , Porcinos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...