Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Islets ; 16(1): 2334044, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38533763

RESUMEN

Pancreatic beta cells are among the slowest replicating cells in the human body and have not been observed to increase in number except during the fetal and neonatal period, in cases of obesity, during puberty, as well as during pregnancy. Pregnancy is associated with increased beta cell mass to meet heightened insulin demands. This phenomenon raises the intriguing possibility that factors present in the serum of pregnant individuals may stimulate beta cell proliferation and offer insights into expansion of the beta cell mass for treatment and prevention of diabetes. The primary objective of this study was to test the hypothesis that serum from pregnant donors contains bioactive factors capable of inducing human beta cell proliferation. An immortalized human beta cell line with protracted replication (EndoC-ßH1) was cultured in media supplemented with serum from pregnant and non-pregnant female and male donors and assessed for differences in proliferation. This experiment was followed by assessment of proliferation of primary human beta cells. Sera from five out of six pregnant donors induced a significant increase in the proliferation rate of EndoC-ßH1 cells. Pooled serum from the cohort of pregnant donors also increased the rate of proliferation in primary human beta cells. This study demonstrates that serum from pregnant donors stimulates human beta cell proliferation. These findings suggest the existence of pregnancy-associated factors that can offer novel avenues for beta cell regeneration and diabetes prevention strategies. Further research is warranted to elucidate the specific factors responsible for this effect.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Recién Nacido , Humanos , Masculino , Femenino , Embarazo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Línea Celular , Diabetes Mellitus/metabolismo , Proliferación Celular
2.
bioRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131658

RESUMEN

Pancreatic beta cells are among the slowest replicating cells in the human body. Human beta cells usually do not increase in number with exceptions being during the neonatal period, in cases of obesity, and during pregnancy. This project explored maternal serum for stimulatory potential on human beta cell proliferation and insulin output. Gravid, full-term women who were scheduled to undergo cesarean delivery were recruited for this study. A human beta cell line was cultured in media supplemented with serum from pregnant and non-pregnant donors and assessed for differences in proliferation and insulin secretion. A subset of pregnant donor sera induced significant increases in beta cell proliferation and insulin secretion. Pooled serum from pregnant donors also increased proliferation in primary human beta cells but not primary human hepatocytes indicating a cell-type specific effect. This study suggests stimulatory factors in human serum during pregnancy could provide a novel approach for human beta cell expansion.

3.
Front Endocrinol (Lausanne) ; 13: 972115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246925

RESUMEN

Gamma aminobutyric acid (GABA) is a non-proteinogenic amino acid and neurotransmitter that is produced in the islet at levels as high as in the brain. GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD), of which the 65 kDa isoform (GAD65) is a major autoantigen in type 1 diabetes. Originally described to be released via synaptic-like microvesicles or from insulin secretory vesicles, beta cells are now understood to release substantial quantities of GABA directly from the cytosol via volume-regulated anion channels (VRAC). Once released, GABA influences the activity of multiple islet cell types through ionotropic GABAA receptors and metabotropic GABAB receptors. GABA also interfaces with cellular metabolism and ATP production via the GABA shunt pathway. Beta cells become depleted of GABA in type 1 diabetes (in remaining beta cells) and type 2 diabetes, suggesting that loss or reduction of islet GABA correlates with diabetes pathogenesis and may contribute to dysfunction of alpha, beta, and delta cells in diabetic individuals. While the function of GABA in the nervous system is well-understood, the description of the islet GABA system is clouded by differing reports describing multiple secretion pathways and effector functions. This review will discuss and attempt to unify the major experimental results from over 40 years of literature characterizing the role of GABA in the islet.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Adenosina Trifosfato/metabolismo , Autoantígenos , Glutamato Descarboxilasa/metabolismo , Humanos , Insulina/metabolismo , Isoformas de Proteínas , Ácido gamma-Aminobutírico/metabolismo
4.
Addict Biol ; 27(5): e13223, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001424

RESUMEN

The use of areca nuts (areca) in the form of betel quids constitutes the fourth most common addiction in the world, associated with high risk for oral disease and cancer. Areca is a complex natural product, making it difficult to identify specific components associated with the addictive and carcinogenic properties. It is commonly believed that the muscarinic agonist arecoline is at the core of the addiction. However, muscarinic receptor activation is not generally believed to support drug-taking behaviour. Subjective accounts of areca use include descriptions of both sedative and stimulatory effects, consistent with the presence of multiple psychoactive agents. We have previously reported partial agonism of α4-containing nicotinic acetylcholine receptors by arecoline and subsequent inhibition of those receptors by whole areca broth. In the present study, we report the inhibition of nicotinic acetylcholine receptors and other types of neurotransmitter receptors with compounds of high molecular weight in areca and the ability of low molecular weight areca extract to activate GABA and glutamate receptors. We confirm the presence of a high concentration of GABA and glutamate in areca. Additionally, data also indicate the presence of a dopamine and serotonin transporter blocking activity in areca that could account for the reported stimulant and antidepressant activity. Our data suggest that toxic elements of high molecular weight may contribute to the oral health liability of betel quid use, while two distinct low molecular weight components may provide elements of reward, and the nicotinic activity of arecoline contributes to the physical dependence of addiction.


Asunto(s)
Conducta Adictiva , Receptores Nicotínicos , Areca , Arecolina/farmacología , Ácido gamma-Aminobutírico
5.
Drug Deliv Transl Res ; 11(5): 2198-2208, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33454926

RESUMEN

Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that is strongly and selectively synthesized in and secreted from pancreatic beta cells. Exogenously delivered GABA has been proposed to induce beta cell regeneration in type 1 diabetes, but these results have been difficult to replicate and may depend on the specifics of the animal model and drug delivery method used. Here, we developed a GABA-releasing ethylene-vinyl acetate polymer implant for sustained GABA delivery to the intraperitoneal space as an alternative to injected or oral GABA. We explored the effect of the GABA-releasing polymer implants compared to implanted osmotic pumps loaded with GABA on islet size in non-diabetic, outbred mice. We also attempted to monitor in vivo GABA release using HPLC on blood samples, but these measurements were confounded by high variability within treatment groups and unexpectedly high serum GABA levels in mice receiving GABA-negative implants. The ethylene-vinyl acetate polymer implants became heavily fibrosed with abdominal adhesion tissue, while the osmotic pumps had no macroscopic fibrosis. Histological analysis showed no significant effect of the sustained GABA delivery polymer or osmotic pumps on islet size, alpha cell to beta cell ratio, or the number of Ki67-positive islet cells. The GABA treatment time course was limited to two weeks due to the drug-release window of the polymer, while others reported islet-trophic effects of GABA after 10 to 12 weeks of treatment. In summary, our study is consistent with the concept that exogenous GABA administration does not significantly alter islet cell mass in non-diabetic CD-1 mice in the short-term. However, more data are needed including higher GABA doses and more prolonged treatment regimens for a better comparison with contrasting reports.


Asunto(s)
Islotes Pancreáticos , Animales , Ratones , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
6.
Nat Metab ; 1(11): 1110-1126, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-32432213

RESUMEN

Pancreatic beta cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) as a paracrine and autocrine signal to help regulate hormone secretion and islet homeostasis. Islet GABA release has classically been described as a secretory vesicle-mediated event. Yet, a limitation of the hypothesized vesicular GABA release from islets is the lack of expression of a vesicular GABA transporter in beta cells. Consequentially, GABA accumulates in the cytosol. Here we provide evidence that the human beta cell effluxes GABA from a cytosolic pool in a pulsatile manner, imposing a synchronizing rhythm on pulsatile insulin secretion. The volume regulatory anion channel (VRAC), functionally encoded by LRRC8A or Swell1, is critical for pulsatile GABA secretion. GABA content in beta cells is depleted and secretion is disrupted in islets from type 1 and type 2 diabetic patients, suggesting that loss of GABA as a synchronizing signal for hormone output may correlate with diabetes pathogenesis.


Asunto(s)
Citosol/metabolismo , Células Secretoras de Insulina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Homeostasis , Humanos , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...