Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(9): 094101, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182516

RESUMEN

We present a spectrophotometer (optical density meter) combined with electromagnets dedicated to the analysis of suspensions of magnetotactic bacteria. The instrument can also be applied to suspensions of other magnetic cells and magnetic particles. We have ensured that our system, called MagOD, can be easily reproduced by providing the source of the 3D prints for the housing, electronic designs, circuit board layouts, and microcontroller software. We compare the performance of our system to existing adapted commercial spectrophotometers. In addition, we demonstrate its use by analyzing the absorbance of magnetotactic bacteria as a function of their orientation with respect to the light path and their speed of reorientation after the field has been rotated by 90°. We continuously monitored the development of a culture of magnetotactic bacteria over a period of 5 days and measured the development of their velocity distribution over a period of one hour. Even though this dedicated spectrophotometer is relatively simple to construct and cost-effective, a range of magnetic field-dependent parameters can be extracted from suspensions of magnetotactic bacteria. Therefore, this instrument will help the magnetotactic research community to understand and apply this intriguing micro-organism.


Asunto(s)
Campos Magnéticos , Magnetismo , Imanes , Espectrofotometría/métodos , Suspensiones
2.
Sci Adv ; 6(19): eaba2007, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32494725

RESUMEN

Interaction between dipolar forces, such as permanent magnets, generally leads to the formation of one-dimensional chains and rings. We investigated whether it was possible to let dipoles self-assemble into three-dimensional structures by encapsulating them in a shell with a specific shape. We found that the condition for self-assembly of a three-dimensional crystal is satisfied when the energies of dipoles in the parallel and antiparallel states are equal. Our experiments show that the most regular structures are formed using cylinders and cuboids and not by spheroids. This simple design rule will help the self-assembly community to realize three-dimensional crystals from objects in the micrometer range, which opens up the way toward previously unknown metamaterials.

3.
Arch Microbiol ; 201(10): 1427-1433, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31414157

RESUMEN

We controlled and observed individual magneto-tactic bacteria (Magnetospirillum gryphiswaldense) inside a [Formula: see text]-high microfluidic channel for over 4 h. After a period of constant velocity, the duration of which varied between bacteria, all observed bacteria showed a gradual decrease in their velocity of about [Formula: see text]. After coming to a full stop, different behaviour was observed, ranging from rotation around the centre of mass synchronous with the direction of the external magnetic field, to being completely immobile. Our results suggest that the influence of the high-intensity illumination and the presence of the channel walls are important parameters to consider when performing observations of such long duration.


Asunto(s)
Técnicas Bacteriológicas/métodos , Magnetospirillum/fisiología , Microfluídica , Técnicas Bacteriológicas/normas , Factores de Tiempo
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1739-1742, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30440731

RESUMEN

We investigate the sensing capabilities of magnetotactic bacteria (Magnetospirillum gryphiswaldense strain MSR1) to MCF-7 breast cancer cells. Cancer cells are allowed to grow inside a capillary tube with depth of 200 $\mu \mathrm {m}$ and motion of magnetotactic bacteria is investigated under the influence of oxygen gradient and geomagnetic field. The influence of cancer cells is modeled to predict the oxygen gradient within the capillary tube in three-dimensional space. Our experimental motion analysis and count of motile magnetotactic bacteria indicate that they migrate towards less-oxygenated regions within the vicinity of cancer cells. Bands of magnetotactic bacteria with average concentration of 18.8±2.0% are observed in close proximity to MCF-7 cells $(h = 20~ \mu \mathrm {m})$, whereas the concentration at proximity of $190~ \mu \mathrm {m}$ is 5.0 ± 6.8%.


Asunto(s)
Magnetospirillum , Modelos Biológicos , Oxígeno , Humanos , Células MCF-7 , Magnetospirillum/fisiología , Movimiento , Oxígeno/metabolismo
5.
Cells ; 6(1)2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-28117759

RESUMEN

Metastasizing tumor cells show increased expression of the intermediate filament (IF) protein vimentin, which has been used to diagnose invasive tumors for decades. Recent observations indicate that vimentin is not only a passive marker for carcinoma, but may also induce tumor cell invasion. To clarify how vimentin IFs control cell adhesions and migration, we analyzed the nanoscale (30-50 nm) spatial organization of vimentin IFs and cell-matrix adhesions in metastatic fibroblast cells, using three-color stimulated emission depletion (STED) microscopy. We also studied whether wild-type and phospho-deficient or -mimicking mutants of vimentin changed the size and lifetime of focal adhesions (FAs), cell shape, and cell migration, using live-cell total internal reflection imaging and confocal microscopy. We observed that vimentin exists in fragments of different lengths. Short fragments were mostly the size of a unit-length filament and were mainly localized close to small cell-matrix adhesions. Long vimentin filaments were found in the proximity of large FAs. Vimentin expression in these cells caused a reduction in FAs size and an elongated cell shape, but did not affect FA lifetime, or the speed or directionality of cell migration. Expression of a phospho-mimicking mutant (S71D) of vimentin increased the speed of cell migration. Taken together, our results suggest that in highly migratory, transformed mesenchymal cells, vimentin levels control the cell shape and FA size, but not cell migration, which instead is linked to the phosphorylation status of S71 vimentin. These observations are consistent with the possibility that not only levels, but also the assembly status of vimentin control cell migration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...