Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 72018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30412051

RESUMEN

Here, we describe the third major release of RELION. CPU-based vector acceleration has been added in addition to GPU support, which provides flexibility in use of resources and avoids memory limitations. Reference-free autopicking with Laplacian-of-Gaussian filtering and execution of jobs from python allows non-interactive processing during acquisition, including 2D-classification, de novo model generation and 3D-classification. Per-particle refinement of CTF parameters and correction of estimated beam tilt provides higher resolution reconstructions when particles are at different heights in the ice, and/or coma-free alignment has not been optimal. Ewald sphere curvature correction improves resolution for large particles. We illustrate these developments with publicly available data sets: together with a Bayesian approach to beam-induced motion correction it leads to resolution improvements of 0.2-0.7 Å compared to previous RELION versions.


Asunto(s)
Automatización de Laboratorios/métodos , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos
2.
EMBO J ; 36(18): 2698-2709, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28739580

RESUMEN

In eukaryotic cells, RNA polymerase I (Pol I) synthesizes precursor ribosomal RNA (pre-rRNA) that is subsequently processed into mature rRNA. To initiate transcription, Pol I requires the assembly of a multi-subunit pre-initiation complex (PIC) at the ribosomal RNA promoter. In yeast, the minimal PIC includes Pol I, the transcription factor Rrn3, and Core Factor (CF) composed of subunits Rrn6, Rrn7, and Rrn11. Here, we present the cryo-EM structure of the 18-subunit yeast Pol I PIC bound to a transcription scaffold. The cryo-EM map reveals an unexpected arrangement of the DNA and CF subunits relative to Pol I. The upstream DNA is positioned differently than in any previous structures of the Pol II PIC. Furthermore, the TFIIB-related subunit Rrn7 also occupies a different location compared to the Pol II PIC although it uses similar interfaces as TFIIB to contact DNA. Our results show that although general features of eukaryotic transcription initiation are conserved, Pol I and Pol II use them differently in their respective transcription initiation complexes.


Asunto(s)
ARN Polimerasa I/química , ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Microscopía por Crioelectrón , ADN de Hongos/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , ARN Ribosómico/biosíntesis , Saccharomyces cerevisiae/genética
3.
EMBO Rep ; 17(7): 1044-60, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27266708

RESUMEN

Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi-scale analysis approach to study the molecular structure of Cvt vesicles. We report the oligomeric nature of the major Cvt cargo Ape1 with a combined 2.8 Å X-ray and negative stain EM structure, as well as the secondary cargo Ams1 with a 6.3 Å cryo-EM structure. We show that the major dodecameric cargo prApe1 exhibits a tendency to form higher-order chain structures that are broken upon interaction with the receptor Atg19 in vitro The stoichiometry of these cargo-receptor complexes is key to maintaining the size of the Cvt aggregate in vivo Using correlative light and electron microscopy, we further visualize key stages of Cvt vesicle biogenesis. Our findings suggest that Atg19 interaction limits Ape1 aggregate size while serving as a vehicle for vacuolar delivery of tetrameric Ams1.


Asunto(s)
Autofagia , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Membranas/metabolismo , Modelos Biológicos , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...