Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5149, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890299

RESUMEN

Telomeres are the protective nucleoprotein structures at the end of linear eukaryotic chromosomes. Telomeres' repetitive nature and length have traditionally challenged the precise assessment of the composition and length of individual human telomeres. Here, we present Telo-seq to resolve bulk, chromosome arm-specific and allele-specific human telomere lengths using Oxford Nanopore Technologies' native long-read sequencing. Telo-seq resolves telomere shortening in five population doubling increments and reveals intrasample, chromosome arm-specific, allele-specific telomere length heterogeneity. Telo-seq can reliably discriminate between telomerase- and ALT-positive cancer cell lines. Thus, Telo-seq is a tool to study telomere biology during development, aging, and cancer at unprecedented resolution.


Asunto(s)
Envejecimiento , Neoplasias , Telómero , Humanos , Telómero/genética , Telómero/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Envejecimiento/genética , Telomerasa/genética , Telomerasa/metabolismo , Línea Celular Tumoral , Acortamiento del Telómero/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Alelos
2.
iScience ; 26(4): 106405, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37013192

RESUMEN

The appropriate regulation of telomere length homeostasis is crucial for the maintenance of genome integrity. The telomere-binding protein TZAP has been suggested to regulate telomere length by promoting t-circle and c-circle excisions through telomere trimming, yet the molecular mechanisms by which TZAP functions at telomeres are not understood. Using a system based on TZAP overexpression, we show that efficient TZAP recruitment to telomeres occurs in the context of open telomeric chromatin caused by loss of ATRX/DAXX independently of H3.3 deposition. Moreover, our data indicate that TZAP binding to telomeres induces telomere dysfunction and ALT-like activity, resulting in the generation of t-circles and c-circles in a Bloom-Topoisomerase IIIα-RMI1-RMI2 (BTR)-dependent manner.

3.
Nature ; 614(7949): 767-773, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755096

RESUMEN

Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations1,2. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.


Asunto(s)
Replicación del ADN , Mitocondrias , Transducción de Señal , Telómero , Humanos , ADN/biosíntesis , ADN/genética , ADN/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/patología , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Telómero/genética , Telómero/metabolismo , Interferones , Inmunidad Innata , Autofagia
4.
Nat Struct Mol Biol ; 24(1): 30-39, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27918544

RESUMEN

Telomere length maintenance ensures self-renewal of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs); however, the mechanisms governing telomere length homeostasis in these cell types are unclear. Here, we report that telomere length is determined by the balance between telomere elongation, which is mediated by telomerase, and telomere trimming, which is controlled by XRCC3 and Nbs1, homologous recombination proteins that generate single-stranded C-rich telomeric DNA and double-stranded telomeric circular DNA (T-circles), respectively. We found that reprogramming of differentiated cells induces T-circle and single-stranded C-rich telomeric DNA accumulation, indicating the activation of telomere trimming pathways that compensate telomerase-dependent telomere elongation in hiPSCs. Excessive telomere elongation compromises telomere stability and promotes the formation of partially single-stranded telomeric DNA circles (C-circles) in hESCs, suggesting heightened sensitivity of stem cells to replication stress at overly long telomeres. Thus, tight control of telomere length homeostasis is essential to maintain telomere stability in hESCs.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Homeostasis del Telómero , Telómero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Reprogramación Celular , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Nucleares/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Telómero/genética
5.
Nat Struct Mol Biol ; 21(2): 167-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24413054

RESUMEN

The mechanism of activation of the alternative lengthening of telomeres (ALT) pathway of mammalian chromosome-end maintenance has been unclear. We have now discovered that co-depletion of the histone chaperones ASF1a and ASF1b in human cells induced all hallmarks of ALT in both primary and cancer cells. These included the formation of ALT-associated PML (promyelocytic leukemia) bodies (APBs), the presence of extrachromosomal telomeric DNA species, an elevated frequency of telomeric sister chromatid exchanges (t-SCE) events and intertelomeric exchange of an integrated tag. The induction of ALT characteristics in this setting led to the simultaneous suppression of telomerase. We determined that ALT induction is positively regulated by the proteins RAD17 and BLM and negatively regulated by EXO1 and DNA2. The induction of ALT phenotypes as a consequence of ASF1 depletion strongly supports the hypothesis that ALT is a consequence of histone management dysfunction.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Chaperonas Moleculares/fisiología , Homeostasis del Telómero/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Replicación del ADN , Regulación de la Expresión Génica , Humanos , Cinética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
6.
EMBO J ; 31(8): 2024-33, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22425786

RESUMEN

To counteract replication-dependent telomere shortening most eukaryotic cells rely on the telomerase pathway, which is crucial for the maintenance of proliferative potential of germ and stem cell populations of multicellular organisms. Likewise, cancer cells usually engage the telomerase pathway for telomere maintenance to gain immortality. However, in ∼10% of human cancers telomeres are maintained through telomerase-independent alternative lengthening of telomeres (ALT) pathways. Here, we describe the generation and characterization of C. elegans survivors in a strain lacking the catalytic subunit of telomerase and the nematode telomere-binding protein CeOB2. These clonal strains, some of which have been propagated for >180 generations, represent the first example of a multicellular organism with canonical telomeres that can survive without a functional telomerase pathway. The animals display the heterogeneous telomere length characteristic for ALT cells, contain single-stranded C-circles, a transcription profile pointing towards an adaptation to chronic stress and are therefore a unique and valuable tool to decipher the ALT mechanism.


Asunto(s)
Caenorhabditis elegans/enzimología , Caenorhabditis elegans/crecimiento & desarrollo , Telomerasa/deficiencia , Proteínas de Unión a Telómeros/deficiencia , Telómero/metabolismo , Animales , Caenorhabditis elegans/genética , Análisis de Supervivencia
7.
Cell ; 132(5): 745-57, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18329362

RESUMEN

Single-strand extensions of the G strand of telomeres are known to be critical for chromosome-end protection and length regulation. Here, we report that in C. elegans, chromosome termini possess 3' G-strand overhangs as well as 5' C-strand overhangs. C tails are as abundant as G tails and are generated by a well-regulated process. These two classes of overhangs are bound by two single-stranded DNA binding proteins, CeOB1 and CeOB2, which exhibit specificity for G-rich or C-rich telomeric DNA. Strains of worms deleted for CeOB1 have elongated telomeres as well as extended G tails, whereas CeOB2 deficiency leads to telomere-length heterogeneity. Both CeOB1 and CeOB2 contain OB (oligo-saccharide/oligo-nucleotide binding) folds, which exhibit structural similarity to the second and first OB folds of the mammalian telomere binding protein hPOT1, respectively. Our results suggest that C. elegans telomere homeostasis relies on a novel mechanism that involves 5' and 3' single-stranded termini.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Unión al ADN/metabolismo , Telómero/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Línea Celular , ADN de Helmintos/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Embrión no Mamífero/metabolismo , Humanos , Homología Estructural de Proteína , Telómero/química , Telómero/ultraestructura
8.
Mol Cell ; 20(4): 551-61, 2005 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-16307919

RESUMEN

Telomeres have to be distinguished from DNA breaks that initiate a DNA damage response. Proteins involved in the DNA damage response have previously been found at telomeres in transformed cells; however, the importance of these factors for telomere function has not been understood. Here, we show that telomeres of telomerase-negative primary cells recruit Mre11, phosphorylated NBS1, and ATM in every G2 phase of the cell cycle. This recruitment correlates with a partial release of telomeric POT1; moreover, telomeres were found to be accessible to modifying enzymes at this time in the cell cycle, suggesting that they are unprotected. Degradation of the MRN complex, as well as inhibition of ATM, led to telomere dysfunction. Consequentially, we propose that a localized DNA damage response at telomeres after replication is essential for recruiting the processing machinery that promotes formation of a chromosome end protection complex.


Asunto(s)
Daño del ADN/fisiología , Fase G2/genética , Telómero/genética , Línea Celular , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fase G2/fisiología , Humanos , Telómero/metabolismo
9.
Science ; 306(5703): 1951-3, 2004 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-15591207

RESUMEN

Cells from Werner syndrome patients are characterized by slow growth rates, premature senescence, accelerated telomere shortening rates, and genome instability. The syndrome is caused by the loss of the RecQ helicase WRN, but the underlying molecular mechanism is unclear. Here we report that cells lacking WRN exhibit deletion of telomeres from single sister chromatids. Only telomeres replicated by lagging strand synthesis were affected, and prevention of loss of individual telomeres was dependent on the helicase activity of WRN. Telomere loss could be counteracted by telomerase activity. We propose that WRN is necessary for efficient replication of G-rich telomeric DNA, preventing telomere dysfunction and consequent genomic instability.


Asunto(s)
ADN Helicasas/metabolismo , Telómero/metabolismo , Síndrome de Werner/genética , Alelos , Anafase , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular , Línea Celular , Células Cultivadas , Cromátides/metabolismo , Cromosomas Humanos/fisiología , Daño del ADN , ADN Helicasas/genética , Proteínas de Unión al ADN , Exodesoxirribonucleasas , Inestabilidad Genómica , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Modelos Genéticos , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , RecQ Helicasas , Fase S , Telomerasa/metabolismo , Proteínas Supresoras de Tumor , Helicasa del Síndrome de Werner
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA