Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(10): 16145-16158, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221465

RESUMEN

We performed detailed balance analysis using rigorous coupled-wave analysis (RCWA) on vertical GaAs nanowire (NW) arrays. Both freestanding NW arrays as well as NW arrays on a perfect back reflector are assessed. Both types of vertical NW arrays demonstrate efficiencies that exceed the Shockley Queisser (SQ) or radiative efficiency limit when the NWs are sufficiently long. The use of a back reflector enhances the efficiency of NW solar cells by increasing solar absorption and suppressing emission from the backside of the solar cell. We study the light trapping and material reduction advantages of NWs. Furthermore, we compare simulations that evaluate detailed balance efficiency with ultimate efficiency and show that ultimate efficiency studies can determine near-optimal solar cells while vastly reducing the number of simulations that need to be performed. While open circuit voltages above the radiative limit can be achieved, tradeoffs with short circuit current must be carefully considered. We also compare our simulation results to other claims in the literature that NWs are capable of exceeding the SQ limit.

2.
Nanotechnology ; 33(24)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35240590

RESUMEN

This paper reports on the formation of moth-eye nanopillar structures on surfaces of alkali-aluminosilicate Gorilla glass substrates using a self-masking plasma etching method. Surface and cross-section chemical compositions studies were carried out to study the formation of the nanostructures. CFxinduced polymers were shown to be the self-masking material during plasma etching. The nanostructures enhance transmission at wavelengths over 525 nm may be utilized for fluid-induced switchable haze. Additional functionalities associated with nanostructures may be realized such as self-cleaning, anti-fogging, and stain-resistance.

3.
ACS Nano ; 14(12): 16241-16265, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33232118

RESUMEN

Bio-inspiration and advances in micro/nanomanufacturing processes have enabled the design and fabrication of micro/nanostructures on optoelectronic substrates and barrier layers to create a variety of functionalities. In this review article, we summarize research progress in multifunctional transparent substrates and barrier layers while discussing future challenges and prospects. We discuss different optoelectronic device configurations, sources of bio-inspiration, photon management properties, wetting properties, multifunctionality, functionality durability, and device durability, as well as choice of materials for optoelectronic substrates and barrier layers. These engineered surfaces may be used for various optoelectronic devices such as touch panels, solar modules, displays, and mobile devices in traditional rigid forms as well as emerging flexible versions.

5.
ACS Appl Mater Interfaces ; 12(19): 22120-22128, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32320200

RESUMEN

Medical textiles have a need for repellency to body fluids such as blood, urine, or sweat that may contain infectious vectors that contaminate surfaces and spread to other individuals. Similarly, viral repellency has yet to be demonstrated and long-term mechanical durability is a major challenge. In this work, we demonstrate a simple, durable, and scalable coating on nonwoven polypropylene textile that is both superhemophobic and antivirofouling. The treatment consists of polytetrafluoroethylene (PTFE) nanoparticles in a solvent thermally sintered to polypropylene (PP) microfibers, which creates a robust, low-surface-energy, multilayer, and multilength scale rough surface. The treated textiles demonstrate a static contact angle of 158.3 ± 2.6° and hysteresis of 4.7 ± 1.7° for fetal bovine serum and reduce serum protein adhesion by 89.7 ± 7.3% (0.99 log). The coated textiles reduce the attachment of adenovirus type 4 and 7a virions by 99.2 ± 0.2% and 97.6 ± 0.1% (2.10 and 1.62 log), respectively, compared to noncoated controls. The treated textiles provide these repellencies by maintaining a Cassie-Baxter state of wetting where the surface area in contact with liquids is reduced by an estimated 350 times (2.54 log) compared to control textiles. Moreover, the treated textiles exhibit unprecedented mechanical durability, maintaining their liquid, protein, and viral repellency after extensive and harsh abrasion and washing. The multilayer, multilength scale roughness provides for mechanical durability through self-similarity, and the samples have high-pressure stability with a breakthrough pressure of about 255 kPa. These properties highlight the potential of durable, repellent coatings for medical gowning, scrubs, or other hygiene textile applications.


Asunto(s)
Adenoviridae/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles Revestidos/química , Nanopartículas/química , Albúmina Sérica Bovina/efectos de los fármacos , Textiles , Células A549 , Adenoviridae/química , Animales , Bovinos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Polipropilenos/química , Politetrafluoroetileno/química , Albúmina Sérica Bovina/química , Textiles/virología , Humectabilidad
6.
Nanotechnology ; 29(42): 42LT01, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30052201

RESUMEN

Transparent polymer substrates have recently received increased attention for various flexible optoelectronic devices. Optoelectronic applications such as solar cells and light emitting-diodes would benefit from substrates with both high transparency and high haze, which increase how much light scatters into or out of the underlying photoactive layers. In this letter, we demonstrate a new flexible nanograss plastic substrate that displays the highest combination of transparency and haze in the literature for polyethylene terephthalate (PET). As opposed to other nanostructures that increase haze at the expense of transparency, our nanograss demonstrates the potential to improve both haze and transparency. Furthermore, the monolithic nanograss may be fabricated in a facile scalable maskless reactive ion etching process without the need for additional lithography or synthesis of nanostructures. Our 9 µm height nanograss sample exhibits a transparency and haze of 92.4% and 89.4%, respectively, and our 34 µm height nanograss displays a transparency and haze of 91.0% and 97.1%, respectively. We also performed durability experiments that demonstrate these nanostructured PET substrates are robust from bending and show similar transmission and haze values after 5000 cycles of bending.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...