Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496466

RESUMEN

The complex and heterogeneous genetic architecture of schizophrenia inspires us to look beyond individual risk genes for therapeutic strategies and target their interactive dynamics and convergence. Postsynaptic NMDA receptor (NMDAR) complexes are a site of such convergence. Src kinase is a molecular hub of NMDAR function, and its protein interaction subnetwork is enriched for risk-genes and altered protein associations in schizophrenia. Previously, Src activity was found to be decreased in post-mortem studies of schizophrenia, contributing to NMDAR hypofunction. PSD-95 suppresses Src via interacting with its SH2 domain. Here, we devised a strategy to suppress the inhibition of Src by PSD-95 via employing a cell penetrating and Src activating PSD-95 inhibitory peptide (TAT-SAPIP). TAT-SAPIP selectively increased post-synaptic Src activity in humans and mice, and enhanced synaptic NMDAR currents in mice. Chronic ICV injection of TAT-SAPIP rescued deficits in trace fear conditioning in Src hypomorphic mice. We propose blockade of the Src-PSD-95 interaction as a proof of concept for the use of interfering peptides as a therapeutic strategy to reverse NMDAR hypofunction in schizophrenia and other illnesses.

3.
Alzheimers Dement (N Y) ; 8(1): e12358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313967

RESUMEN

Introduction: Olfactory impairment in older individuals is associated with an increased risk of Alzheimer's disease (AD). Characterization of age versus neuropathology-associated changes in the brain olfactory pathway may elucidate processes underlying early AD pathogenesis. Here, we report age versus AD neuropathology-associated differential transcription in four brain regions in the olfactory pathway of 10 female African green monkeys (vervet, Chlorocebus aethiops sabaeus), a well-described model of early AD-like neuropathology. Methods: Transcriptional profiles were determined by microarray in the olfactory bulb (OB), piriform cortex (PC), temporal lobe white matter (WM), and inferior temporal cortex (ITC). Amyloid beta (Aß) plaque load in parietal and temporal cortex was determined by immunohistochemistry, and concentrations of Aß42, Aß40, and norepinephrine in ITC were determined by enzyme-linked immuosorbent assay (ELISA). Transcriptional profiles were compared between middle-aged and old animals, and associations with AD-relevant neuropathological measures were determined. Results: Transcriptional profiles varied by brain region and age group. Expression levels of TRO and RNU4-1 were significantly lower in all four regions in the older group. An additional 29 genes were differentially expressed by age in three of four regions. Analyses of a combined expression data set of all four regions identified 77 differentially expressed genes (DEGs) by age group. Among these DEGs, older subjects had elevated levels of CTSB , EBAG9, LAMTOR3, and MRPL17, and lower levels of COMMD10 and TYW1B. A subset of these DEGs was associated with neuropathology biomarkers. Notably, CTSB was positively correlated with Aß plaque counts, Aß42:Aß40 ratios, and norepinephrine levels in all brain regions. Discussion: These data demonstrate age differences in gene expression in olfaction-associated brain regions. Biological processes exhibiting age-related enrichment included the regulation of cell death, vascular function, mitochondrial function, and proteostasis. A subset of DEGs was specifically associated with AD phenotypes. These may represent promising targets for future mechanistic investigations and perhaps therapeutic intervention.

4.
Nat Neurosci ; 25(4): 474-483, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35332326

RESUMEN

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 104-106-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography. Large clusters of hyper-acetylated CRDs were enriched for SCZ heritability, with prominent representation of regulatory sequences governing fetal development and glutamatergic neuron signaling. Therefore, SCZ and BD brains show coordinated dysregulation of risk-associated regulatory sequences assembled into kilobase- to megabase-scaling chromosomal domains.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Adulto , Trastorno Bipolar/genética , Encéfalo , Cromatina , Humanos , Lisina/genética , Esquizofrenia/genética
5.
JAMA Psychiatry ; 79(3): 193-200, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080598

RESUMEN

IMPORTANCE: Serotonin reuptake inhibitors (SRIs) are the only medications approved for obsessive-compulsive disorder (OCD), yet most patients taking SRIs exhibit significant symptoms. Adding exposure/response prevention (EX/RP) therapy improves symptoms, but it is unknown whether patients maintain wellness after discontinuing SRIs. OBJECTIVE: To assess whether patients with OCD who are taking SRIs and have attained wellness after EX/RP augmentation can discontinue their SRI with noninferior outcomes compared with those who continue their SRI therapy. DESIGN, SETTING, AND PARTICIPANTS: A 24-week, double-blind, randomized clinical trial was performed from May 3, 2013, to June 25, 2018. The trial took place at US academic medical centers. Participants included 137 adults with a principal diagnosis of OCD (≥1 year) who were taking an SRI (≥12 weeks), had at least moderate symptoms (defined as Yale-Brown Obsessive-Compulsive Scale [Y-BOCS] score ≥18 points), and received as many as 25 sessions of EX/RP therapy. Those who attained wellness (Y-BOCS score ≤14 points; 103 patients [75.2%]) were study eligible. Data were analyzed from June 29, 2019, to October 2, 2021. INTERVENTION: Participants were randomly assigned either to receive taper to placebo (taper group) or to continue their SRI (continuation group) and monitored for 24 weeks. MAIN OUTCOME AND MEASURES: The Y-BOCS score (range, 0-40 points) was the primary outcome; the Hamilton Depression Rating Scale (HDRS; range, 0-52 points) and the Quality-of-Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF; range, 0%-100%) scores were secondary outcomes. Outcomes were assessed at 8 time points by independent evaluators who were blinded to randomization. The taper regimen was hypothesized to be noninferior to continuation at 24 weeks using a 1-sided α value of .05. RESULTS: A total of 101 patients (mean [SD] age, 31.0 [11.2] years; 55 women [54.5%]) participated in the trial: 51 patients (50.5%) in the taper group and 50 patients (49.5%) in the continuation group. At 24 weeks, patients in the taper group had noninferior results compared with patients in the continuation group (mean [SD] Y-BOCS score: taper group, 11.47 [6.56] points; continuation group: 11.51 [5.97] points; difference, -0.04 points; 1-sided 95% CI, -∞ to 2.09 points [below the noninferiority margin of 3.0 points]; mean [SD] HDRS score: taper group, 5.69 [3.84] points; continuation group, 4.61 [3.46] points; difference, 1.08 points; 1-sided 95% CI, -∞ to 2.28 points [below the noninferiority margin of 2.5 points]; mean [SD] Q-LES-Q-SF score: taper group, 68.01% [15.28%]; continuation group, 70.01% [15.59%]; difference, 2.00%; 1-sided 95% CI, -∞ to 6.83 [below the noninferiority margin of 7.75]). However, the taper group had higher rates of clinical worsening (23 of 51 [45%] vs 12 of 50 [24%]; P = .04). CONCLUSIONS AND RELEVANCE: Results of this randomized clinical trial show that patients with OCD who achieve wellness after EX/RP therapy could, on average, discontinue their SRI with noninferior outcomes compared with those who continued their SRI. Those who tapered the SRI had higher clinical worsening rates. Future research should evaluate if SRI half-life alters these rates. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01686087.


Asunto(s)
Terapia Cognitivo-Conductual , Terapia Implosiva , Trastorno Obsesivo Compulsivo , Adulto , Terapia Cognitivo-Conductual/métodos , Terapia Combinada , Femenino , Humanos , Masculino , Trastorno Obsesivo Compulsivo/diagnóstico , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Resultado del Tratamiento
6.
Mol Psychiatry ; 26(12): 7699-7708, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34272489

RESUMEN

While the pathophysiology of schizophrenia has been extensively investigated using homogenized postmortem brain samples, few studies have examined changes in brain samples with techniques that may attribute perturbations to specific cell types. To fill this gap, we performed microarray assays on mRNA isolated from anterior cingulate cortex (ACC) superficial and deep pyramidal neurons from 12 schizophrenia and 12 control subjects using laser-capture microdissection. Among all the annotated genes, we identified 134 significantly increased and 130 decreased genes in superficial pyramidal neurons, while 93 significantly increased and 101 decreased genes were found in deep pyramidal neurons, in schizophrenia compared to control subjects. In these differentially expressed genes, we detected lamina-specific changes of 55 and 31 genes in superficial and deep neurons in schizophrenia, respectively. Gene set enrichment analysis (GSEA) was applied to the entire pre-ranked differential expression gene lists to gain a complete pathway analysis throughout all annotated genes. Our analysis revealed overrepresented groups of gene sets in schizophrenia, particularly in immunity and synapse-related pathways, suggesting the disruption of these pathways plays an important role in schizophrenia. We also detected other pathways previously demonstrated in schizophrenia pathophysiology, including cytokine and chemotaxis, postsynaptic signaling, and glutamatergic synapses. In addition, we observed several novel pathways, including ubiquitin-independent protein catabolic process. Considering the effects of antipsychotic treatment on gene expression, we applied a novel bioinformatics approach to compare our differential expression gene profiles with 51 antipsychotic treatment datasets, demonstrating that our results were not influenced by antipsychotic treatment. Taken together, we found pyramidal neuron-specific changes in neuronal immunity, synaptic dysfunction, and olfactory dysregulation in schizophrenia, providing new insights for the cell-subtype specific pathophysiology of chronic schizophrenia.


Asunto(s)
Antipsicóticos , Esquizofrenia , Antipsicóticos/metabolismo , Humanos , Neuronas/metabolismo , Células Piramidales/metabolismo , ARN Mensajero/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
7.
Behav Res Ther ; 143: 103890, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089924

RESUMEN

Practice guidelines for adults with obsessive-compulsive disorder (OCD) recommend augmenting serotonin reuptake inhibitors (SRIs) with exposure and ritual prevention (EX/RP). However, fewer than half of patients remit after a standard 17-session EX/RP course. We studied whether extending the course increased overall remission rates and which patient factors predicted remission. Participants were 137 adults with clinically significant OCD (Yale-Brown Obsessive Compulsive Scale [Y-BOCS] score ≥18) despite an adequate SRI trial (≥12 weeks). Continuing their SRI, patients received 17 sessions of twice-weekly EX/RP (standard course). Patients who did not remit (Y-BOCS ≤12) received up to 8 additional sessions (extended course). Of 137 entrants, 123 completed treatment: 49 (35.8%) remitted with the standard course and another 46 (33.6%) with the extended course. Poorer patient homework adherence, more Obsessive-Compulsive Personality Disorder (OCPD) traits, and the Brain-Derived Neurotrophic Factor (BDNF) Val66MET genotype were associated with lower odds of standard course remission. Only homework adherence differentiated non-remitters from extended course remitters. Extending the EX/RP course from 17 to 25 sessions enabled many (69.3%) OCD patients on SRIs to achieve remission. Although behavioral (patient homework adherence), psychological (OCPD traits), and biological (BDNF genotype) factors influenced odds of EX/RP remission, homework adherence was the most potent patient factor overall.


Asunto(s)
Terapia Cognitivo-Conductual , Trastorno Obsesivo Compulsivo , Adulto , Terapia Combinada , Humanos , Trastorno Obsesivo Compulsivo/terapia , Cooperación del Paciente , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Resultado del Tratamiento
8.
JCI Insight ; 5(5)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32069266

RESUMEN

Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of 2 classes of regulatory complexes: permissive coactivators and silencing corepressors. Much work has focused on coactivator complexes, but little is known about the corepressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the corepressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the postsynaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the metabotropic glutamate receptor 1α (mGluR1α) and mGluR5 dependence of long-term potentiation, and increases activation of ERK in the hippocampus after learning. Our studies define a critical role for corepressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.


Asunto(s)
Hipocampo/fisiología , Proteínas de Andamiaje Homer/metabolismo , Plasticidad Neuronal/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal/fisiología , Complejo Correpresor Histona Desacetilasa y Sin3/fisiología , Animales , Hipocampo/metabolismo , Ratones , Ratones Mutantes , Neuronas/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética
9.
Mol Psychiatry ; 25(4): 750-760, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30214040

RESUMEN

Multiple lines of evidence point to glutamatergic signaling in the postsynaptic density (PSD) as a pathophysiologic mechanism in schizophrenia. Integral to PSD glutamatergic signaling is reciprocal interplay between GluN and mGluR5 signaling. We examined agonist-induced mGluR5 signaling in the postmortem dorsolateral prefrontal cortex (DLPFC) derived from 17 patients and age-matched and sex-matched controls. The patient group showed a striking reduction in mGluR5 signaling, manifested by decreases in Gq/11 coupling and association with PI3K and Homer compared to controls (p < 0.01 for all). This was accompanied by increases in serine and tyrosine phosphorylation of mGluR5, which can decrease mGluR5 activity via desensitization (p < 0.01). In addition, we find altered protein-protein interaction (PPI) of mGluR5 with RGS4, norbin, Preso 1 and tamalin, which can also attenuate mGluR5 activity. We previously reported molecular underpinnings of GluN hypofunction (decreased GluN2 phosphorylation) and here we show those of reduced mGluR5 signaling in schizophrenia. We find that reduced GluN2 phosphorylation can be precipitated by attenuated mGluR5 activity and that increased mGluR5 phosphorylation can result from decreased GluN function, suggesting a reciprocal interplay between the two pathways in schizophrenia. Interestingly, the patient group showed decreased mGluR5-GluN association (p < 0.01), a mechanistic basis for the reciprocal facilitation. In sum, we present the first direct evidence for mGluR5 hypoactivity, propose a reciprocal interplay between GluN and mGluR5 pathways as integral to glutamatergic dysregulation and suggest protein-protein interactions in mGluR5-GluN complexes as potential targets for intervention in schizophrenia.


Asunto(s)
Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Anciano , Anciano de 80 o más Años , Antipsicóticos/uso terapéutico , Encéfalo/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Femenino , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Fosforilación , Densidad Postsináptica/metabolismo , Corteza Prefrontal/metabolismo , Receptor del Glutamato Metabotropico 5/fisiología , Transducción de Señal/efectos de los fármacos
10.
Schizophr Res ; 217: 148-161, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31416743

RESUMEN

The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.


Asunto(s)
Proteoma , Esquizofrenia , Biología Computacional , Humanos , Proteómica , Esquizofrenia/genética , Transcriptoma
11.
Sci Data ; 6(1): 180, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551426

RESUMEN

Schizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder. Here we present a public resource of functional genomic data from the dorsolateral prefrontal cortex (DLPFC; Brodmann areas 9 and 46) of 986 individuals from 4 separate brain banks, including 353 diagnosed with schizophrenia and 120 with bipolar disorder. The genomic data include RNA-seq and SNP genotypes on 980 individuals, and ATAC-seq on 269 individuals, of which 264 are a subset of individuals with RNA-seq. We have performed extensive preprocessing and quality control on these data so that the research community can take advantage of this public resource available on the Synapse platform at http://CommonMind.org .


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Estudios de Cohortes , Epigenómica , Humanos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Esquizofrenia/genética , Esquizofrenia/patología , Transcriptoma
12.
Artículo en Inglés | MEDLINE | ID: mdl-30826459

RESUMEN

Much evidence suggests that hypofunction of the N-methyl-d-aspartate glutamate receptor (NMDAR) may contribute broadly towards a subset of molecular, cognitive and behavioral abnormalities common among psychiatric and developmental diseases. However, little is known about the specific molecular changes that lead to NMDAR dysfunction. As such, personalized approaches to remediating NMDAR dysfunction based on a specific etiology remains a challenge. Sarcoma tyrosine kinase (Src) serves as a hub for multiple signaling mechanisms affecting GluN2 phosphorylation and can be disrupted by convergent alterations of various signaling pathways. We recently showed reduced Src signaling in post mortem tissue from schizophrenia patients, despite increased MK-801 binding and NMDA receptor complex expression in the postsynaptic density (PSD). These data suggest that Src dysregulation may be an important underlying mechanism responsible for reduced glutamate signaling. Despite this evidence for a central role of Src in NMDAR signaling, little is known about how reductions in Src activity might regulate phenotypic changes in cognition and behavior. As such, the current study sought to characterize behavioral and electrophysiological phenotypes in mice heterozygous for the Src Acl gene (Src+/- mice). Src+/- mice demonstrated decreased sociability and working memory relative to Src+/+ (WT) mice while no significant differences were seen on locomotive activity and anxiety-related behavior. In relation to WT mice, Src+/- mice showed decreased mid-latency P20 auditory event related potential (aERP) amplitudes, decreased mismatch negativity (MMN) and decreased evoked gamma power, which was only present in males. These data indicate that Src+/- mice are a promising new model to help understand the pathophysiology of these electrophysiological, behavioral and cognitive changes. As such, we propose that Src+/- mice can be used in the future to evaluate potential therapeutic approaches by targeting increased Src activity as a common final pathway for multiple etiologies of SCZ and other diseases characterized by reduced glutamate function.


Asunto(s)
Memoria a Corto Plazo , Conducta Social , Familia-src Quinasas/deficiencia , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Electroencefalografía , Electrofisiología , Potenciales Evocados/fisiología , Femenino , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esquizofrenia/enzimología , Esquizofrenia/fisiopatología , Familia-src Quinasas/fisiología
13.
Science ; 362(6420)2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30545851

RESUMEN

To explore the developmental reorganization of the three-dimensional genome of the brain in the context of neuropsychiatric disease, we monitored chromosomal conformations in differentiating neural progenitor cells. Neuronal and glial differentiation was associated with widespread developmental remodeling of the chromosomal contact map and included interactions anchored in common variant sequences that confer heritable risk for schizophrenia. We describe cell type-specific chromosomal connectomes composed of schizophrenia risk variants and their distal targets, which altogether show enrichment for genes that regulate neuronal connectivity and chromatin remodeling, and evidence for coordinated transcriptional regulation and proteomic interaction of the participating genes. Developmentally regulated chromosomal conformation changes at schizophrenia-relevant sequences disproportionally occurred in neurons, highlighting the existence of cell type-specific disease risk vulnerabilities in spatial genome organization.


Asunto(s)
Cromosomas Humanos/química , Conectoma , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Células-Madre Neurales/citología , Neurogénesis/genética , Esquizofrenia/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Células Cultivadas , Cromatina/química , Ensamble y Desensamble de Cromatina , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuronas/citología , Neuronas/metabolismo , Conformación de Ácido Nucleico , Mapas de Interacción de Proteínas/genética , Proteómica , Riesgo , Transcripción Genética , Transcriptoma
14.
Transl Psychiatry ; 8(1): 44, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29391398

RESUMEN

Schizophrenia (SCZ) is a neuropsychiatric disorder with a complex genetic etiology. The redundancy of the gene networks underlying SCZ indicates that many gene combinations have the potential to cause a system dysfunction that can manifest as SCZ or a related neurodevelopmental disorder. Recent studies show that small non-coding microRNA (miRNA) and long non-coding RNA (lncRNA) are important factors in shaping these networks and are dynamically regulated by neuronal activation. We investigated the genome-wide transcription profiles of 46 human amygdala samples obtained from 22 SCZ patients and 24 healthy controls. Using RNA sequencing (RNA-seq), we determined lncRNA expression levels in all samples and generated miRNA profiles for 27 individuals (13 cases and 14 controls). Previous studies have identified differentially expressed miRNAs in SCZ, including miR-132, miR-212, and miR-34a/miR-34c. Here we report differential expression of a novel miRNA, miR1307, in SCZ. Notably, miR1307 maps to a locus previously associated with SCZ through GWAS. Additionally, one lncRNA that was overexpressed in SCZ, AC005009.2, also maps to a region previously associated with SCZ based on GWAS and overlapped SCZ-related genes. The results were replicated in a large independent data set of 254 dorsolateral prefrontal cortex samples from the CommonMind consortium. Taken together, these results suggest that miRNA and lncRNAs are important contributors to the pathogenesis of SCZ.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/metabolismo , Corteza Prefrontal/metabolismo , ARN Largo no Codificante/metabolismo , Esquizofrenia/metabolismo , Análisis de Secuencia de ARN/métodos , Adulto , Femenino , Humanos , Masculino
15.
Neuropsychopharmacology ; 42(13): 2602-2611, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28585566

RESUMEN

Whereas some rare genetic variants convey high risk for schizophrenia (SZ), common alleles conveying even moderate risk remain elusive. Long interspersed element-1s (L1) are mobile retrotransposons comprising ~17% of the human genome. L1 retrotransposition can cause somatic mosaicism during neurodevelopment by insertional mutagenesis. We hypothesized that, compared to controls, patients diagnosed with schizophrenia (PDS) may have increased numbers of deleterious L1 insertions, perhaps occurring de novo, in brain-expressed genes of dorsolateral prefrontal cortex (DLPFC) neurons. Neuronal and non-neuronal nuclei were separated by fluorescence-activated cell sorting from postmortem DLPFC of 36 PDS and 26 age-matched controls. Genomic sequences flanking the 3'-side of L1s were amplified from neuronal DNA, and neuronal L1 libraries were sequenced. Aligned sequences were analyzed for L1 insertions using custom bioinformatics programs. Ontology and pathway analyses were done on lists of genes putatively disrupted by L1s in PDS and controls. Cellular or population allele frequencies of L1s were assessed by droplet digital PCR or Taqman genotyping. We observed a statistically significant increase in the proportion of intragenic novel L1s in DLPFC of PDS. We found over-representation of L1 insertions within the gene ontologies 'cell projection' and 'postsynaptic membrane' in the gene lists derived from PDS samples, but not from controls. Cellular allele frequencies of examined L1 insertions indicated heterozygosity in genomes of DLPFC cells. An L1 within ERI1 exoribonuclease family member 3 (ERI3) was found to associate with SZ. These results extend prior work documenting increased L1 genetic burden in the brains of PDS and also identify unique genes that may provide new insight into the pathophysiology of schizophrenia.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Corteza Prefrontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Anciano , Núcleo Celular/metabolismo , Biología Computacional , Femenino , Frecuencia de los Genes , Ontología de Genes , Técnicas de Genotipaje , Humanos , Masculino , Neuronas/metabolismo , Análisis de Secuencia de ADN
16.
Biol Psychiatry ; 81(3): 193-202, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27567313

RESUMEN

BACKGROUND: Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. METHODS: Mice lacking one copy of Pcdh10 (Pcdh10+/-) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. RESULTS: Male Pcdh10+/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10+/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. CONCLUSIONS: Our studies reveal that male Pcdh10+/- mice have synaptic and behavioral deficits, and establish Pcdh10+/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Cadherinas/fisiología , Conducta Social , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Trastorno del Espectro Autista/psicología , Conducta Animal/fisiología , Cadherinas/genética , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Femenino , Ritmo Gamma , Haploinsuficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas del Tejido Nervioso/metabolismo , Densidad Postsináptica/metabolismo , Protocadherinas , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Vocalización Animal
17.
Nat Neurosci ; 19(11): 1442-1453, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27668389

RESUMEN

Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.


Asunto(s)
Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Esquizofrenia/genética , Encéfalo/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Riesgo
18.
Curr Psychiatry Rep ; 18(8): 77, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27371030

RESUMEN

Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia.


Asunto(s)
Encéfalo/fisiopatología , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Vesículas Sinápticas/fisiología , Animales , Encéfalo/patología , Humanos , Proteínas Munc18/fisiología , Neurotransmisores/metabolismo , Proteínas Qa-SNARE/fisiología , Proteínas R-SNARE/fisiología , ARN Mensajero/genética , Receptores Presinapticos/fisiología , Proteínas SNARE/fisiología , Esquizofrenia/patología , Transducción de Señal/fisiología , Sinapsinas/fisiología , Vesículas Sinápticas/genética , Sinaptofisina/fisiología , Proteína 25 Asociada a Sinaptosomas/fisiología
19.
J Neurodev Disord ; 8: 14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27134685

RESUMEN

BACKGROUND: Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia differentially impact males and females and are highly heritable. The ways in which sex and genetic vulnerability influence the pathogenesis of these disorders are not clearly understood. The n-methyl-d-aspartate (NMDA) receptor pathway has been implicated in schizophrenia and autism spectrum disorders and changes dramatically across postnatal development at the level of the GluN2B-GluN2A subunit "switch" (a shift from reliance on GluN2B-containing receptors to reliance on GluN2A-containing receptors). We investigated whether sex and genetic vulnerability (specifically, null mutation of DTNBP1 [dysbindin; a possible susceptibility gene for schizophrenia]) influence the developmental GluN2B-GluN2A switch. METHODS: Subcellular fractionation to enrich for postsynaptic density (PSD), together with Western blotting and kinase assay, were used to investigate the GluN2B-GluN2A switch in the cortex and hippocampus of male and female DTNBP1 null mutant mice and their wild-type littermates. Main effects of sex and DTNBP1 genotype, and interactions with age, were assessed using factorial ANOVA. RESULTS: Sex differences in the GluN2B-GluN2A switch emerged across development at the frontal cortical synapse, in parameters related to GluN2B. Males across genotypes displayed higher GluN2B:GluN2A and GluN2B:GluN1 ratios (p < 0.05 and p < 0.01, respectively), higher GluN2B phosphorylation at Y1472 (p < 0.01), and greater abundance of PLCγ (p < 0.01) and Fyn (p = 0.055) relative to females. In contrast, effects of DTNBP1 were evident exclusively in the hippocampus. The developmental trajectory of GluN2B was disrupted in DTNBP1 null mice (genotype × age interaction p < 0.05), which also displayed an increased synaptic GluN2A:GluN1 ratio (p < 0.05) and decreased PLCγ (p < 0.05) and Fyn (only in females; p < 0.0005) compared to wild-types. CONCLUSIONS: Sex and DTNBP1 mutation influence the GluN2B-GluN2A switch at the synapse in a brain-region-specific fashion involving pY1472-GluN2B, Fyn, and PLCγ. This highlights the possible mechanisms through which risk factors may mediate their effects on vulnerability to disorders of NMDA receptor dysfunction.

20.
Schizophr Bull ; 42(2): 377-85, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26373539

RESUMEN

Increasing evidence suggests that olfactory dysfunction is an endophenotype of schizophrenia, and thus the olfactory system can be studied both in relation to this sensory dysfunction and also as a means of examining pathophysiologic mechanisms of schizophrenia. In this study, we examined human olfactory neuroepithelial (ON) biopsy tissues and their in vitro culture cells for ligand-induced guanine nucleotide-binding protein (G protein) activation and downstream signaling. We assessed the binding of a nonhydrolyzable GTP analogue [(35)S]GTPγS binding to specific G protein subtypes in response to odorants, dopamine, or serotonin in ON cell membranes from matched schizophrenia-control subjects. In response to odorant mixtures, we found decreased [(35)S]GTPγS binding to Gαs/olf in schizophrenia patients. These changes were not mediated by mRNA expression of key molecules of G protein coupling, including adenylate cyclase III (ACIII), protein kinase A (PKA), protein kinase Cγ (PKCγ), or Gαs or Gαolf in ON cells or ON biopsy tissues. In contrast, dopamine (DA)- and serotonin (5HT)-induced S(35)-GTPγS binding to Gαs/olf and Gαq/11 were significantly increased in schizophrenia cases, while these parameters were strikingly reduced by in vitro treatment with antipsychotics. Patients with schizophrenia exhibit increases in electrolfactogram (EOG) recordings, suggesting enhanced odorant-induced activation. Our results of decreased odorant-induced G protein activation may point further downstream for underlying mechanisms for increased EOG measures. Increased G protein activation in response to DA and 5HT may suggest increased postreceptor DA or 5HT signaling as an additional mechanism of dopaminergic or serotonergic dysregulation in schizophrenia.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células Neuroepiteliales/metabolismo , Trastornos del Olfato/metabolismo , Esquizofrenia/metabolismo , Transducción de Señal/fisiología , Adulto , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tabique Nasal/citología , Trastornos del Olfato/etiología , Esquizofrenia/complicaciones , Cornetes Nasales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...