Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
ACS Synth Biol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912892

RESUMEN

Metabolically engineered microbial consortia can contribute as a promising production platform for the supply of polyamide monomers. To date, the biosynthesis of long-chain α,ω-diamines from n-alkanes is challenging because of the inert nature of n-alkanes and the complexity of the overall synthesis pathway. We combined an engineered Yarrowia lipolytica module with Escherichia coli modules to obtain a mixed strain microbial consortium that could catalyze an efficient biotransformation of n-alkanes into corresponding α,ω-diamines. The engineered Y. lipolytica strain was constructed (YALI10) wherein the two genes responsible for ß-oxidation and the five genes responsible for the overoxidation of fatty aldehydes were deleted. This newly constructed YALI10 strain expressing transaminase (TA) could produce 0.2 mM 1,12-dodecanediamine (40.1 mg/L) from 10 mM n-dodecane. The microbial consortia comprising engineered Y. lipolytica strains for the oxidation of n-alkanes (OM) and an E. coli amination module (AM) expressing an aldehyde reductase (AHR) and transaminase (TA) improved the production of 1,12-diamine up to 1.95 mM (391 mg/L) from 10 mM n-dodecane. Finally, combining the E. coli reduction module (RM) expressing a carboxylic acid reductase (CAR) and an sfp phosphopantetheinyl transferase with OM and AM further improved the production of 1,12-diamine by catalyzing the reduction of undesired 1,12-diacids into 1,12-diols, which further undergo amination to give 1,12-diamine as the target product. This newly constructed mixed strain consortium comprising three modules in one pot gave 4.1 mM (41%; 816 mg/L) 1,12-diaminododecane from 10 mM n-dodecane. The whole-cell consortia reported herein present an elegant "greener" alternative for the biosynthesis of various α,ω-diamines (C8, C10, C12, and C14) from corresponding n-alkanes.

2.
Structure ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38908377

RESUMEN

Docking domains (DDs) located at the C- and N-termini of polypeptides play a crucial role in directing the assembly of polyketide synthases (PKSs), which are multienzyme complexes. Here, we determined the crystal structure of a complex comprising the C-terminal DD (CDDMlnB) and N-terminal DD (NDDMlnC) of macrolactin trans-acyltransferase (AT) PKS that were fused to a functional enzyme, AmpC EC2 ß-lactamase. Interface analyses of the CDDMlnB/NDDMlnC complex revealed the molecular intricacies in the core section underpinning the precise DD assembly. Additionally, circular dichroism and steady-state kinetics demonstrated that the formation of the CDDMlnB/NDDMlnC complex had no influence on the structural and functional fidelity of the fusion partner, AmpC EC2. This inspired us to apply the CDDMlnB/NDDMlnC assembly to metabolon engineering. Indeed, DD assembly induced the formation of a complex between 4-coumarate-CoA ligase and chalcone synthase both involved in flavonoid biosynthesis, leading to a remarkable increase in naringenin production in vitro.

3.
Metab Eng ; 83: 183-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631459

RESUMEN

Monoterpenes and monoterpenoids such as (S)-limonene and geraniol are valuable chemicals with a wide range of applications, including cosmetics, pharmaceuticals, and biofuels. Saccharomyces cerevisiae has proven to be an effective host to produce various terpenes and terpenoids. (S)-limonene and geraniol are produced from geranyl pyrophosphate (GPP) through the enzymatic actions of limonene synthase (LS) and geraniol synthase (GES), respectively. However, a major hurdle in their production arises from the dual functionality of the Erg20, a farnesyl pyrophosphate (FPP) synthase, responsible for generating GPP. Erg20 not only synthesizes GPP by condensing isopentenyl pyrophosphate (IPP) with dimethylallyl pyrophosphate but also catalyzes further condensation of IPP with GPP to produce FPP. In this study, we have tackled this issue by harnessing previously developed Erg20 mutants, Erg20K197G (Erg20G) and Erg20F96W, N127W (Erg20WW), which enhance GPP accumulation. Through a combination of these mutants, we generated a novel Erg20WWG mutant with over four times higher GPP accumulating capability than Erg20WW, as observed through geraniol production levels. The Erg20WWG mutant was fused to the LS from Mentha spicata or the GES from Catharanthus roseus for efficient conversion of GPP to (S)-limonene and geraniol, respectively. Further improvements were achieved by localizing the entire mevalonate pathway and the Erg20WWG-fused enzymes in peroxisomes, while simultaneously downregulating the essential ERG20 gene using the glucose-sensing HXT1 promoter. In the case of (S)-limonene production, additional Erg20WWG-LS was expressed in the cytosol. As a result, the final strains produced 1063 mg/L of (S)-limonene and 1234 mg/L of geraniol by fed-batch biphasic fermentations with ethanol feeding. The newly identified Erg20WWG mutant opens doors for the efficient production of various other GPP-derived chemicals including monoterpene derivatives and cannabinoids.


Asunto(s)
Monoterpenos Acíclicos , Limoneno , Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Limoneno/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos/metabolismo , Ingeniería Metabólica , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Diterpenos/metabolismo , Difosfatos
4.
Metab Eng ; 81: 197-209, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072356

RESUMEN

Ricinoleic acid (C18:1-OH, RA) is a valuable hydroxy fatty acid with versatile applications. The current industrial source of RA relies on the hydrolysis of castor bean oil. However, the coexistence of the toxic compound ricin and the unstable supply of this plant have led to an exploration of promising alternatives: generating RA in heterologous plants or microorganisms. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce RA in the form of free fatty acids (FFA). First, we overexpressed fungal Δ12 oleate hydroxylase gene (CpFAH12) from Claviceps purpurea while deleting genes related to fatty acid degradation (MEF1 and PEX10) and oleic acid desaturation (FAD2). Since Δ12 oleate hydroxylase converts oleic acid (C18:1) located at the sn-2 position of phosphatidylcholine (PC), we next focused on increasing the PC pool containing oleic acid. This objective was achieved thorough implementing metabolic engineering strategies designed to enhance the biosynthesis of PC and C18 fatty acids. To increase the PC pool, we redirected the flux towards phospholipid biosynthesis by deleting phosphatidic acid phosphatase genes (PAH1 and APP1) and diacylglycerol acyltransferase gene (DGA1), involved in the production of diacylglycerol and triacylglycerol, respectively. Furthermore, the PC biosynthesis via the CDP-DAG pathway was enhanced through the overexpression of CDS1, PSD1, CHO2, and OPI3 genes. Subsequently, to increase the oleic acid content within PC, we overexpressed the heterologous fatty acid elongase gene (MaC16E) involved in the conversion of C16 to C18 fatty acids. As RA production titer escalated, the produced RA was mainly found in the FFA form, leading to cell growth inhibition. The growth inhibition was mitigated by inducing RA secretion via Triton X-100 treatment, a process that simultaneously amplified RA production by redirecting flux towards RA synthesis. The final engineered strain JHYL-R146 produced 2.061 g/L of free RA in a medium treated with 5% Triton X-100, constituting 74% of the total FFAs produced. Generating free RA offers the added benefit of bypassing the hydrolysis stage required when employing castor bean oil as an RA source. This achievement represents the highest level of RA synthesis from glucose reported thus far, underscoring the potential of Y. lipolytica as a host for sustainable RA production.


Asunto(s)
Ácidos Grasos no Esterificados , Yarrowia , Ácidos Grasos no Esterificados/genética , Ácidos Grasos no Esterificados/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ácido Oléico/genética , Ácido Oléico/metabolismo , Ácidos Ricinoleicos/metabolismo , Octoxinol/metabolismo , Ácidos Grasos/metabolismo , Oxigenasas de Función Mixta/genética , Ingeniería Metabólica
5.
Biotechnol Biofuels Bioprod ; 16(1): 162, 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37899467

RESUMEN

BACKGROUND: Mycosporine-like amino acids (MAAs), including shinorine and porphyra-334, are gaining attention as safe natural sunscreens. The production of MAAs has been achieved in diverse microbial hosts, including Saccharomyces cerevisiae. While S. cerevisiae is the most extensively studied model yeast, the oleaginous yeast Yarrowia lipolytica has emerged as a promising candidate for the synthesis of valuable products. In this study, we explored the potential of Y. lipolytica as a host for producing MAAs, utilizing its advantages such as a robust pentose phosphate pathway flux and versatile carbon source utilization. RESULTS: We produced MAAs in Y. lipolytica by introducing the MAA biosynthetic genes from cyanobacteria Nostoc punctiforme and Anabaena variabilis. These genes include mysA, mysB, and mysC responsible for producing mycosporine-glycine (MG) from sedoheptulose 7-phosphate (S7P). The two strains utilize different enzymes, D-Ala-D-Ala ligase homologue (MysD) in N. punctiforme and NRPS-like enzyme (MysE) in A. variabilis, for amino acid conjugation to MG. MysE specifically generated shinorine, a serine conjugate of MG, while MysD exhibited substrate promiscuity, yielding both shinorine and a small amount of porphyra-334, a threonine conjugate of MG. We enhanced MAAs production by selecting mysA, mysB, and mysC from A. variabilis and mysD from N. punctiforme based on their activities. We further improved production by strengthening promoters, increasing gene copies, and introducing the xylose utilization pathway. Co-utilization of xylose with glucose or glycerol increased MAAs production by boosting the S7P pool through the pentose phosphate pathway. Overexpressing GND1 and ZWF1, key genes in the pentose phosphate pathway, further enhanced MAAs production. The highest achieved MAAs level was 249.0 mg/L (207.4 mg/L shinorine and 41.6 mg/L of porphyra-334) in YP medium containing 10 g/L glucose and 10 g/L xylose. CONCLUSIONS: Y. lipolytica was successfully engineered to produce MAAs, primarily shinorine. This achievement involved the introduction of MAA biosynthetic genes from cyanobacteria, establishing xylose utilizing pathway, and overexpressing the pentose phosphate pathway genes. These results highlight the potential of Y. lipolytica as a promising yeast chassis strain for MAAs production, notably attributed to its proficient expression of MysE enzyme, which remains non-functional in S. cerevisiae, and versatile utilization of carbon sources like glycerol.

6.
Biotechnol Biofuels Bioprod ; 16(1): 114, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464261

RESUMEN

BACKGROUND: Methanotrophs have emerged as promising hosts for the biological conversion of methane into value-added chemicals, including various organic acids. Understanding the mechanisms of acid tolerance is essential for improving organic acid production. WatR, a LysR-type transcriptional regulator, was initially identified as involved in lactate tolerance in a methanotrophic bacterium Methylomonas sp. DH-1. In this study, we investigated the role of WatR as a regulator of cellular defense against weak organic acids and identified novel target genes of WatR. RESULTS: By conducting an investigation into the genome-wide binding targets of WatR and its role in transcriptional regulation, we identified genes encoding an RND-type efflux pump (WatABO pump) and previously unannotated small open reading frames (smORFs), watS1 to watS5, as WatR target genes activated in response to acetate. The watS1 to watS5 genes encode polypeptides of approximately 50 amino acids, and WatS1 to WatS4 are highly homologous with one predicted transmembrane domain. Deletion of the WatABO pump genes resulted in decreased tolerance against formate, acetate, lactate, and propionate, suggesting its role as an efflux pump for a wide range of weak organic acids. WatR repressed the basal expression of watS genes but activated watS and WatABO pump genes in response to acetate stress. Overexpression of watS1 increased tolerance to acetate but not to other acids, only in the presence of the WatABO pump. Therefore, WatS1 may increase WatABO pump specificity toward acetate, switching the general weak acid efflux pump to an acetate-specific efflux pump for efficient cellular defense against acetate stress. CONCLUSIONS: Our study has elucidated the role of WatR as a key transcription factor in the cellular defense against weak organic acids, particularly acetate, in Methylomonas sp. DH-1. We identified the genes encoding WatABO efflux pump and small polypeptides (WatS1 to WatS5), as the target genes regulated by WatR for this specific function. These findings offer valuable insights into the mechanisms underlying weak acid tolerance in methanotrophic bacteria, thereby contributing to the development of bioprocesses aimed at converting methane into value-added chemicals.

7.
Nat Commun ; 14(1): 3201, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268615

RESUMEN

Metal nanoclusters (NCs), an important class of nanoparticles (NPs), are extremely small in size and possess quasi-molecular properties. Due to accurate stoichiometry of constituent atoms and ligands, NCs have strong structure-property relationship. The synthesis of NCs is seemingly similar to that of NPs as both are formed by colloidal phase transitions. However, they are considerably different because of metal-ligand complexes in NC synthesis. Reactive ligands can convert metal salts to complexes, actual precursors to metal NCs. During the complex formation, various metal species occur, having different reactivity and fraction depending on synthetic conditions. It can alter their degree of participation in NC synthesis and the homogeneity of final products. Herein, we investigate the effects of complex formation on the entire NC synthesis. By controlling the fraction of various Au species showing different reactivity, we find that the extent of complex formation alters reduction kinetics and the uniformity of Au NCs. We demonstrate that this concept can be universally applied to synthesize Ag, Pt, Pd, and Rh NCs.

8.
Metab Eng ; 78: 137-147, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37257683

RESUMEN

Mycosporine-like amino acids (MAAs) are promising natural sunscreens mainly produced in marine organisms. Until now, metabolic engineering efforts to produce MAAs in heterologous hosts have mainly focused on shinorine production, and the low production levels are still not suitable for industrial applications. In this study, we successfully developed Saccharomyces cerevisiae strains that can efficiently produce various disubstituted MAAs, including shinorine, porphyra-334, and mycosporine-2-glycine (M2G), which are formed by conjugating serine, threonine, and glycine to mycosporine-glycine (MG), respectively. We first generated an MG-producing strain by multiple integration of the biosynthetic genes from cyanobacteria and applying metabolic engineering strategies to increase sedoheptulose-7-phosphate pool, a substrate for MG production. Next, five mysD genes from cyanobacteria, which encode D-Ala-D-Ala ligase homologues that conjugate an amino acid to MG, were introduced into the MG-producing strain to determine the substrate preference of each MysD enzyme. MysDs from Lyngbya sp., Nostoclinckia, and Euhalothece sp. showed high specificity toward serine, threonine, and glycine, resulting in efficient production of shinorine, porphyra-334, and M2G, respectively. This is the first report on the production of porphyra-334 and M2G in S. cerevisiae. Furthermore, we identified that the substrate specificity of MysD was determined by the omega loop region of 43-45 amino acids predicted based on its structural homology to a D-Ala-D-Ala ligase from Thermus thermophilus involved in peptidoglycan biosynthesis. The substrate specificities of two MysD enzymes were interchangeable by swapping the omega loop region. Using the engineered strain expressing mysD from Lyngbya sp. or N. linckia, up to 1.53 g/L shinorine or 1.21 g/L porphyra-334 was produced by fed-batch fermentation in a 5-L bioreactor, the highest titer reported so far. These results suggest that S. cerevisiae is a promising host for industrial production of different types of MAAs, providing a sustainable and eco-friendly alternative for the development of natural sunscreens.


Asunto(s)
Cianobacterias , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Protectores Solares/química , Protectores Solares/metabolismo , Glicina/metabolismo , Aminoácidos/metabolismo , Cianobacterias/metabolismo , Treonina , Serina/metabolismo
9.
Metab Eng ; 73: 26-37, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35671979

RESUMEN

The demand for bio-based retinol (vitamin A) is currently increasing, however its instability represents a major bottleneck in microbial production. Here, we developed an efficient method to selectively produce retinol in Yarrowia lipolytica. The ß-carotene 15,15'-dioxygenase (BCO) cleaves ß-carotene into retinal, which is reduced to retinol by retinol dehydrogenase (RDH). Therefore, to produce retinol, we first generated ß-carotene-producing strain based on a high-lipid-producer via overexpressing genes including heterologous ß-carotene biosynthetic genes, GGS1F43I mutant of endogenous geranylgeranyl pyrophosphate synthase isolated by directed evolution, and FAD1 encoding flavin adenine dinucleotide synthetase, while deleting several genes previously known to be beneficial for carotenoid production. To produce retinol, 11 copies of BCO gene from marine bacterium 66A03 (Mb.Blh) were integrated into the rDNA sites of the ß-carotene overproducer. The resulting strain produced more retinol than retinal, suggesting strong endogenous promiscuous RDH activity in Y. lipolytica. The introduction of Mb.Blh led to a considerable reduction in ß-carotene level, but less than 5% of the consumed ß-carotene could be detected in the form of retinal or retinol, implying severe degradation of the produced retinoids. However, addition of the antioxidant butylated hydroxytoluene (BHT) led to a >20-fold increase in retinol production, suggesting oxidative damage is the main cause of intracellular retinol degradation. Overexpression of GSH2 encoding glutathione synthetase further improved retinol production. Raman imaging revealed co-localization of retinol with lipid droplets, and extraction of retinol using Tween 80 was effective in improving retinol production. By combining BHT treatment and extraction using Tween 80, the final strain CJ2104 produced 4.86 g/L retinol and 0.26 g/L retinal in fed-batch fermentation in a 5-L bioreactor, which is the highest retinol production titer ever reported. This study demonstrates that Y. lipolytica is a suitable host for the industrial production of bio-based retinol.


Asunto(s)
Yarrowia , Antioxidantes , Hidroxitolueno Butilado/metabolismo , Detergentes/metabolismo , Polisorbatos/metabolismo , Vitamina A/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , beta Caroteno/metabolismo
10.
FEMS Yeast Res ; 21(7)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34612490

RESUMEN

Mycosporine-like amino acids (MAAs), microbial secondary metabolites with ultraviolet (UV) absorption properties, are promising natural sunscreen materials. Due to the low efficiency of extracting MAAs from natural producers, production in heterologous hosts has recently received attention. Shinorine is a well characterized MAA with strong UV-A absorption property. Previous, we developed Saccharomyces cerevisiae strain producing shinorine by introducing four shinorine biosynthetic genes from cyanobacterium Nostoc punctiforme. Shinorine is produced from sedoheptulose 7-phosphate (S7P), an intermediate in the pentose phosphate pathway. Shinorine production was greatly improved by using xylose as a co-substrate, which can increase the S7P pool. However, due to a limited xylose-utilizing capacity of the engineered strain, glucose was used as a co-substrate to support cell growth. In this study, we further improved shinorine production by attenuating glucose catabolism via glycolysis, which can redirect the carbon flux from glucose to the pentose phosphate pathway favoring shinorine production. Of the strategies we examined to reduce glycolytic flux, deletion of HXK2, encoding hexokinase, was most effective in increasing shinorine production. Furthermore, by additional expression of Ava3858 from Anabaena variabilis, encoding a rate-limiting enzyme 2-demethyl 4-deoxygadusol synthase, 68.4 mg/L of shinorine was produced in an optimized medium containing 14 g/L glucose and 6 g/L xylose, achieving a 2.2-fold increase compared with the previous strain.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Xilosa , Ciclohexilaminas , Glucosa , Glicina/análogos & derivados , Hexoquinasa/genética , Saccharomyces cerevisiae/genética , Protectores Solares
11.
Metab Eng ; 66: 68-78, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33845171

RESUMEN

Acetoin is widely used in food and cosmetics industries as a taste and fragrance enhancer. To produce (R)-acetoin in Saccharomyces cerevisiae, acetoin biosynthetic genes encoding α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD) from Bacillus subtilis and water-forming NADH oxidase (NoxE) from Lactococcus lactis were integrated into delta-sequences in JHY605 strain, where the production of ethanol, glycerol, and (R,R)-2,3-butanediol (BDO) was largely eliminated. We further improved acetoin production by increasing acetoin tolerance by adaptive laboratory evolution, and eliminating other byproducts including meso-2,3-BDO and 2,3-dimethylglycerate, a newly identified byproduct. Ara1, Ypr1, and Ymr226c (named Ora1) were identified as (S)-alcohol-forming reductases, which can reduce (R)-acetoin to meso-2,3-BDO in vitro. However, only Ara1 and Ypr1 contributed to meso-2,3-BDO production in vivo. We elucidate that Ora1, having a substrate preference for (S)-acetoin, reduces (S)-α-acetolactate to 2,3-dimethylglycerate, thus competing with AlsD-mediated (R)-acetoin production. By deleting ARA1, YPR1, and ORA1, 101.3 g/L of (R)-acetoin was produced with a high yield (96% of the maximum theoretical yield) and high stereospecificity (98.2%).


Asunto(s)
Acetoína , Saccharomyces cerevisiae , Oxidorreductasas de Alcohol/genética , Butileno Glicoles , NAD , Saccharomyces cerevisiae/genética
12.
Nucleic Acids Res ; 49(2): 745-759, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367825

RESUMEN

Gcr1, an important transcription factor for glycolytic genes in Saccharomyces cerevisiae, was recently revealed to have two isoforms, Gcr1U and Gcr1S, produced from un-spliced and spliced transcripts, respectively. In this study, by generating strains expressing only Gcr1U or Gcr1S using the CRISPR/Cas9 system, we elucidate differential activation mechanisms of these two isoforms. The Gcr1U monomer forms an active complex with its coactivator Gcr2 homodimer, whereas Gcr1S acts as a homodimer without Gcr2. The USS domain, 55 residues at the N-terminus existing only in Gcr1U, inhibits dimerization of Gcr1U and even acts in trans to inhibit Gcr1S dimerization. The Gcr1S monomer inhibits the metabolic switch from fermentation to respiration by directly binding to the ALD4 promoter, which can be restored by overexpression of the ALD4 gene, encoding a mitochondrial aldehyde dehydrogenase required for ethanol utilization. Gcr1U and Gcr1S regulate almost the same target genes, but show unique activities depending on growth phase, suggesting that these isoforms play differential roles through separate activation mechanisms depending on environmental conditions.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/genética , Sistemas CRISPR-Cas , Respiración de la Célula , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/química , Activación Enzimática , Etanol/metabolismo , Glicerol/metabolismo , Glucólisis , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , RNA-Seq , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Factores de Transcripción/deficiencia
13.
J Appl Microbiol ; 130(6): 1981-1992, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33190388

RESUMEN

AIMS: To genetically engineer the oleaginous yeast Yarrowia lipolytica for de novo production of tetraacetylphytosphingosine (TAPS), a precursor of phytosphingosine, and optimization of fermentation conditions for high yield. METHODS AND RESULTS: We successfully constructed a TAPS-producing Y. lipolytica CE3 strain by co-expression of Wickerhamomyces ciferrii-derived acetyl transferases, Sli1p and Atf2p. Next, we optimized several environmental factors including temperature, initial pH and C/N ratio for TAPS production in a shake culture. Deletion of LCB4 in CE3 strain increased the volumetric TAPS titre and cell-specific yield to 142·1 ± 10·7 mgTAPS  l-1 and 3·08 ± 0·11 mgTAPS  gDCW -1 , respectively, in a shake flask culture incubated for 120 h at 28°C with glycerol as the carbon source. Finally, we developed a 5-l fed-batch process with NaOH-mediated pH control and olive oil as a carbon source, exhibiting 650 ± 24 mgTAPS  l-1 of TAPS production within 56 h of the fermentation. CONCLUSIONS: The introduction of codon-optimized Sli1p and Atf2p, deletion of LCB4 gene and sexual hybridization, accompanied by specific fermentation conditions, enhanced TAPS yield in Y. lipolytica. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results highlight Y. lipolytica as a promising candidate for the industrial production of TAPS, an important component of cosmetic formulations.


Asunto(s)
Esfingosina/análogos & derivados , Yarrowia/genética , Yarrowia/metabolismo , Técnicas de Cultivo Celular por Lotes , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microbiología Industrial , Ingeniería Metabólica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/enzimología , Saccharomycetales/genética , Esfingosina/análisis , Esfingosina/biosíntesis
14.
Biotechnol J ; 15(1): e1900238, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31657874

RESUMEN

The oleaginous yeast Yarrowia lipolytica has a tendency to use the non-homologous end joining repair (NHEJ) over the homology directed recombination as double-strand breaks (DSB) repair system, making it difficult to edit the genome using homologous recombination. A recently developed Target-AID (activation-induced cytidine deaminase) base editor, designed to recruit cytidine deaminase (CDA) to the target DNA locus via the CRISPR/Cas9 system, can directly induce C to T mutation without DSB and donor DNA. In this study, this system is adopted in Y. lipolytica for multiplex gene disruption. Target-specific gRNA(s) and a fusion protein consisting of a nickase Cas9, pmCDA1, and uracil DNA glycosylase inhibitor are expressed from a single plasmid to disrupt target genes by introducing a stop codon via C to T mutation within the mutational window. Deletion of the KU70 gene involved in the NHEJ prevents the generation of indels by base excision repair following cytidine deamination, increasing the accuracy of genome editing. Using this Target-AID system with optimized expression levels of the base editor, single gene disruption and simultaneous double gene disruption are achieved with the efficiencies up to 94% and 31%, respectively, demonstrating this base editing system as a convenient genome editing tool in Y. lipolytica.


Asunto(s)
Sistemas CRISPR-Cas/genética , Citidina Desaminasa , Edición Génica/métodos , Genoma Bacteriano/genética , Yarrowia/genética , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Uracil-ADN Glicosidasa/genética
15.
Sci Rep ; 9(1): 17424, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745174

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Biotechnol Biofuels ; 12: 234, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31583020

RESUMEN

BACKGROUND: Methane, a main component of natural gas and biogas, has gained much attention as an abundant and low-cost carbon source. Methanotrophs, which can use methane as a sole carbon and energy source, are promising hosts to produce value-added chemicals from methane, but their metabolic engineering is still challenging. In previous attempts to produce lactic acid (LA) from methane, LA production levels were limited in part due to LA toxicity. We solved this problem by generating an LA-tolerant strain, which also contributes to understanding novel LA tolerance mechanisms. RESULTS: In this study, we engineered a methanotroph strain Methylomonas sp. DH-1 to produce d-lactic acid (d-LA) from methane. LA toxicity is one of the limiting factors for high-level production of LA. Therefore, we first performed adaptive laboratory evolution of Methylomonas sp. DH-1, generating an LA-tolerant strain JHM80. Genome sequencing of JHM80 revealed the causal gene watR, encoding a LysR-type transcription factor, whose overexpression due to a 2-bp (TT) deletion in the promoter region is partly responsible for the LA tolerance of JHM80. Overexpression of the watR gene in wild-type strain also led to an increase in LA tolerance. When d form-specific lactate dehydrogenase gene from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 was introduced into the genome while deleting the glgA gene encoding glycogen synthase, JHM80 produced about 7.5-fold higher level of d-LA from methane than wild type, suggesting that LA tolerance is a critical limiting factor for LA production in this host. d-LA production was further enhanced by optimization of the medium, resulting in a titer of 1.19 g/L and a yield of 0.245 g/g CH4. CONCLUSIONS: JHM80, an LA-tolerant strain of Methylomonas sp. DH-1, generated by adaptive laboratory evolution was effective in LA production from methane. Characterization of the mutated genes in JHM80 revealed that overexpression of the watR gene, encoding a LysR-type transcription factor, is responsible for LA tolerance. By introducing a heterologous lactate dehydrogenase gene into the genome of JHM80 strain while deleting the glgA gene, high d-LA production titer and yield were achieved from methane.

17.
Sci Rep ; 9(1): 3996, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850698

RESUMEN

Isobutanol production in Saccharomyces cerevisiae is limited by subcellular compartmentalization of the pathway enzymes. In this study, we improved isobutanol production in S. cerevisiae by constructing an artificial cytosolic isobutanol biosynthetic pathway consisting of AlsS, α-acetolactate synthase from Bacillus subtilis, and two endogenous mitochondrial enzymes, ketol-acid reductoisomerase (Ilv5) and dihydroxy-acid dehydratase (Ilv3), targeted to the cytosol. B. subtilis AlsS was more active than Ilv2ΔN54, an endogenous α-acetolactate synthase targeted to the cytosol. However, overexpression of alsS led to a growth inhibition, which was alleviated by overexpressing ILV5ΔN48 and ILV3ΔN19, encoding the downstream enzymes targeted to the cytosol. Therefore, accumulation of the intermediate α-acetolactate might be toxic to the cells. Based on these findings, we improved isobutanol production by expressing alsS under the control of a copper-inducible CUP1 promoter, and by increasing translational efficiency of the ILV5ΔN48 and ILV3ΔN19 genes by adding Kozak sequence. Furthermore, strains with multi-copy integration of alsS into the delta-sequences were screened based on growth inhibition upon copper-dependent induction of alsS. Next, the ILV5ΔN48 and ILV3ΔN19 genes were integrated into the rDNA sites of the alsS-integrated strain, and the strains with multi-copy integration were screened based on the growth recovery. After optimizing the induction conditions of alsS, the final engineered strain JHY43D24 produced 263.2 mg/L isobutanol, exhibiting about 3.3-fold increase in production compared to a control strain constitutively expressing ILV2ΔN54, ILV5ΔN48, and ILV3ΔN19 on plasmids.

18.
Appl Microbiol Biotechnol ; 103(1): 211-223, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30343427

RESUMEN

Lycopene is a red carotenoid pigment with strong antioxidant activity. Saccharomyces cerevisiae is considered a promising host to produce lycopene, but lycopene toxicity is one of the limiting factors for high-level production. In this study, we used heterologous lycopene biosynthesis genes crtE and crtI from Xanthophyllomyces dendrorhous and crtB from Pantoea agglomerans for lycopene production in S. cerevisiae. The crtE, crtB, and crtI genes were integrated into the genome of S. cerevisiae CEN.PK2-1C strain, while deleting DPP1 and LPP1 genes to inhibit a competing pathway producing farnesol. Lycopene production was further improved by inhibiting ergosterol production via downregulation of ERG9 expression and by deleting ROX1 or MOT3 genes encoding transcriptional repressors for mevalonate and sterol biosynthetic pathways. To further increase lycopene production, CrtE and CrtB mutants with improved activities were isolated by directed evolution, and subsequently, the mutated genes were randomly integrated into the engineered lycopene-producing strains via delta-integration. To relieve lycopene toxicity by increasing unsaturated fatty acid content in cell membranes, the OLE1 gene encoding stearoyl-CoA 9-desaturase was overexpressed. In combination with the overexpression of STB5 gene encoding a transcription factor involved in NADPH production, the final strain produced up to 41.8 mg/gDCW of lycopene, which is approximately 74.6-fold higher than that produced in the initial strain.


Asunto(s)
Licopeno/metabolismo , Microorganismos Modificados Genéticamente , NADP/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Basidiomycota/genética , Membrana Celular/metabolismo , Evolución Molecular Dirigida , Farnesol/metabolismo , Farnesil Difosfato Farnesil Transferasa/genética , Farnesil Difosfato Farnesil Transferasa/metabolismo , Ácidos Grasos Insaturados/metabolismo , Regulación Fúngica de la Expresión Génica , Pantoea/genética , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Nucleic Acids Res ; 47(3): 1211-1224, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30476185

RESUMEN

In Saccharomyces cerevisiae, Haa1 and War1 transcription factors are involved in cellular adaptation against hydrophilic weak acids and lipophilic weak acids, respectively. However, it is unclear how these transcription factors are differentially activated depending on the identity of the weak acid. Using a field-effect transistor (FET)-type biosensor based on carbon nanofibers, in the present study we demonstrate that Haa1 and War1 directly bind to various weak acid anions with different affinities. Haa1 is most sensitive to acetate, followed by lactate, whereas War1 is most sensitive to benzoate, followed by sorbate, reflecting their differential activation during weak acid stresses. We show that DNA binding by Haa1 is induced in the presence of acetic acid and that the N-terminal Zn-binding domain is essential for this activity. Acetate binds to the N-terminal 150-residue region, and the transcriptional activation domain is located between amino acid residues 230 and 483. Our data suggest that acetate binding converts an inactive Haa1 to the active form, which is capable of DNA binding and transcriptional activation.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ácido Acético/metabolismo , Técnicas Biosensibles , ADN de Hongos/metabolismo , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estrés Fisiológico , Factores de Transcripción/química
20.
ACS Synth Biol ; 8(2): 346-357, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30586497

RESUMEN

Shinorine, a mycosporine-like amino acid (MAA), is a small molecule sunscreen produced in some bacteria. In this study, by introducing shinorine biosynthetic genes from cyanobacteria Nostoc punctiform into Saccharomyces cerevisiae, we successfully constructed yeast strains capable of producing shinorine. Sedoheptulose 7-phosphate (S7P), an intermediate of the pentose phosphate pathway, is a key substrate for shinorine biosynthesis. To increase the S7P pool, xylose, which is assimilated via the pentose phosphate pathway, was used as a carbon source after introducing xylose assimilation genes from Scheffersomyces stipitis into the shinorine-producing strain. The resulting xylose-fermenting strain produced a trace amount of shinorine when cells were grown in glucose, but shinorine production was dramatically increased by adding xylose in the medium. Shinorine production was further improved by modulating the pentose phosphate pathway through deleting TAL1 and overexpressing STB5 and TKL1. The final engineered strain JHYS17-4 produced 31.0 mg/L (9.62 mg/g DCW) of shinorine in the optimized medium containing 8 g/L of xylose and 12 g/L of glucose, demonstrating that S. cerevisiae is a promising host to produce this natural sunscreen material.


Asunto(s)
Ciclohexilaminas/metabolismo , Glicina/análogos & derivados , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Glicina/metabolismo , Vía de Pentosa Fosfato , Fosfatos de Azúcar/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...