Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(40): E5454-60, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26351689

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation, there are no effective methods to eliminate pathogenic bacteria in food. Colicins are nonantibiotic antimicrobial proteins, produced by E. coli strains that kill or inhibit the growth of other E. coli strains. Several colicins are highly effective against key EHEC strains. Here we demonstrate very high levels of colicin expression (up to 3 g/kg of fresh biomass) in tobacco and edible plants (spinach and leafy beets) at costs that will allow commercialization. Among the colicins examined, plant-expressed colicin M had the broadest antimicrobial activity against EHEC and complemented the potency of other colicins. A mixture of colicin M and colicin E7 showed very high activity against all major EHEC strains, as defined by the US Department of Agriculture/Food and Drug Administration. Treatments with low (less than 10 mg colicins per L) concentrations reduced the pathogenic bacterial load in broth culture by 2 to over 6 logs depending on the strain. In experiments using meats spiked with E. coli O157:H7, colicins efficiently reduced the population of the pathogen by at least 2 logs. Plant-produced colicins could be effectively used for the broad control of pathogenic E. coli in both plant- and animal-based food products and, in the United States, colicins could be approved using the generally recognized as safe (GRAS) regulatory approval pathway.


Asunto(s)
Colicinas/metabolismo , Colicinas/farmacología , Escherichia coli O157/efectos de los fármacos , Plantas Comestibles/metabolismo , Secuencia de Aminoácidos , Animales , Beta vulgaris/genética , Beta vulgaris/metabolismo , Colicinas/genética , Electroforesis en Gel de Poliacrilamida , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/crecimiento & desarrollo , Peces , Microbiología de Alimentos , Carne/microbiología , Datos de Secuencia Molecular , Plantas Comestibles/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Porcinos , Nicotiana/genética , Nicotiana/metabolismo
2.
Plant Biotechnol J ; 13(5): 708-16, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25470212

RESUMEN

Transient transfection of plants by vacuum infiltration of Agrobacterium vectors represents the state of the art in plant-based protein manufacturing; however, the complexity and cost of this approach restrict it to pharmaceutical proteins. We demonstrated that simple spraying of Nicotiana plants with Agrobacterium vectors in the presence of a surfactant can substitute for vacuum inoculation. When the T-DNA of Agrobacterium encodes viral replicons capable of cell-to-cell movement, up to 90% of the leaf cells can be transfected and express a recombinant protein at levels up to 50% of total soluble protein. This simple, fast and indefinitely scalable process was successfully applied to produce cellulases, one of the most volume- and cost-sensitive biotechnology products. We demonstrate here for the first time that representatives of all hydrolase classes necessary for cellulosic biomass decomposition can be expressed at high levels, stored as silage without significant loss of activity and then used directly as enzyme additives. This process enables production of cellulases, and other potential high-volume products such as noncaloric sweetener thaumatin and antiviral protein griffithsin, at commodity agricultural prices and could find broad applicability in the large-scale production of many other cost-sensitive proteins.


Asunto(s)
Agrobacterium tumefaciens/genética , Biotecnología/métodos , Celulasas/metabolismo , Vectores Genéticos/genética , Nicotiana/metabolismo , Biomasa , Celulasas/genética , ADN Bacteriano , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/metabolismo , Replicón/genética , Nicotiana/genética
3.
PLoS One ; 6(5): e19509, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21625585

RESUMEN

TAL (transcription activator-like) effectors are translocated by Xanthomonas bacteria into plant cells where they activate transcription of target genes. DNA target sequence recognition occurs in a unique mode involving a central domain of tandem repeats. Each repeat recognizes a single base pair in a contiguous DNA sequence and a pair of adjacent hypervariable amino acid residues per repeat specifies which base is bound. Rearranging the repeats allows the design of novel TAL proteins with predictable DNA-recognition specificities. TAL protein-based transcriptional activation in plant cells is mediated by a C-terminal activation domain (AD). Here, we created synthetic TAL proteins with designed repeat compositions using a novel modular cloning strategy termed "Golden TAL Technology". Newly programmed TAL proteins were not only functional in plant cells, but also in human cells and activated targeted expression of exogenous as well as endogenous genes. Transcriptional activation in different human cell lines was markedly improved by replacing the TAL-AD with the VP16-AD of herpes simplex virus. The creation of TAL proteins with potentially any desired DNA-recognition specificity allows their versatile use in biotechnology.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteína Vmw65 de Virus del Herpes Simple/genética , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Activación Transcripcional , Proteínas Reguladoras de la Apoptosis/genética , Western Blotting , ADN/genética , Proteínas de Unión al ADN/química , Células HeLa , Humanos , Interferón-alfa/genética , Interferón beta/genética , Riñón/citología , Riñón/metabolismo , Luciferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , Secuencias Repetitivas de Aminoácido , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Science ; 326(5959): 1509-12, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19933107

RESUMEN

The pathogenicity of many bacteria depends on the injection of effector proteins via type III secretion into eukaryotic cells in order to manipulate cellular processes. TAL (transcription activator-like) effectors from plant pathogenic Xanthomonas are important virulence factors that act as transcriptional activators in the plant cell nucleus, where they directly bind to DNA via a central domain of tandem repeats. Here, we show how target DNA specificity of TAL effectors is encoded. Two hypervariable amino acid residues in each repeat recognize one base pair in the target DNA. Recognition sequences of TAL effectors were predicted and experimentally confirmed. The modular protein architecture enabled the construction of artificial effectors with new specificities. Our study describes the functionality of a distinct type of DNA binding domain and allows the design of DNA binding domains for biotechnology.


Asunto(s)
Secuencias de Aminoácidos , ADN de Plantas/química , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Activación Transcripcional , Xanthomonas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Secuencia de Bases , Biotecnología , Capsicum/genética , Genes de Plantas , Modelos Biológicos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Secuencias Repetitivas de Aminoácido , Nicotiana/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Xanthomonas/patogenicidad
5.
Plant J ; 59(6): 859-71, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19473322

RESUMEN

The Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) employs a type III secretion system to translocate effector proteins into plant cells where they modulate host signaling pathways to the pathogen's benefit. The effector protein AvrBs3 acts as a eukaryotic transcription factor and induces the expression of plant genes termed UPA (up-regulated by AvrBs3). Here, we describe 11 new UPA genes from bell pepper that are induced by AvrBs3 early after infection with Xcv. Sequence comparisons revealed the presence of a conserved AvrBs3-responsive element, the UPA box, in all UPA gene promoters analyzed. Analyses of UPA box mutant derivatives confirmed its importance for gene induction by AvrBs3. We show that DNA binding and gene activation were strictly correlated. DNase I footprint studies demonstrated that the UPA box corresponds to the center of the AvrBs3-protected DNA region. Type III delivery of AvrBs3 and mutant derivatives showed that some UPA genes are induced by the AvrBs3 deletion derivative AvrBs3Deltarep16, which lacks four repeats. We show that AvrBs3Deltarep16 recognizes a mutated UPA box with two nucleotide exchanges in positions that are not essential for binding and activation by AvrBs3.


Asunto(s)
Proteínas Bacterianas/metabolismo , Capsicum/genética , Proteínas de Unión al ADN/metabolismo , Xanthomonas campestris/patogenicidad , Secuencia de Bases , Capsicum/microbiología , Análisis Mutacional de ADN , ADN Complementario/genética , ADN de Plantas/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Familia de Multigenes , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Unión Proteica , Elementos de Respuesta , Efectores Tipo Activadores de la Transcripción , Xanthomonas campestris/metabolismo
6.
Plant Physiol ; 150(4): 1697-712, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19448036

RESUMEN

The pepper (Capsicum annuum) bacterial spot (Bs) resistance gene Bs3 and its allelic variant Bs3-E mediate recognition of the Xanthomonas campestris pv vesicatoria type III effector protein AvrBs3 and its deletion derivative AvrBs3Deltarep16. Recognition specificity resides in the Bs3 and Bs3-E promoters and is determined by a defined promoter region, the UPA (for up-regulated by AvrBs3) box. Using site-directed mutagenesis, we defined the exact boundaries of the UPA(AvrBs3) box of the Bs3 promoter and the UPA(AvrBs3Deltarep16) box of the Bs3-E promoter and show that both boxes overlap by at least 11 nucleotides. Despite partial sequence identity, the UPA(AvrBs3) box and the UPA(AvrBs3Deltarep16) box were bound specifically by the corresponding AvrBs3 and AvrBs3Deltarep16 proteins, respectively, suggesting that selective promoter binding of AvrBs3-like proteins is the basis for promoter activation specificity. We also demonstrate that the UPA(AvrBs3) box retains its functionality at different positions within the pepper Bs3 promoter and confers AvrBs3 inducibility in a novel promoter context. Notably, the transfer of the UPA(AvrBs3) box to different promoter locations is always correlated with a new transcriptional start site. The analysis of naturally occurring Bs3 alleles revealed many pepper accessions that encode a nonfunctional Bs3 variant. These accessions showed no apparent abnormalities, supporting the supposition that Bs3 functions only in disease resistance and not in other developmental or physiological processes.


Asunto(s)
Alelos , Proteínas Bacterianas/metabolismo , Capsicum/genética , Capsicum/microbiología , Genes de Plantas , Regiones Promotoras Genéticas , Emparejamiento Base , Secuencia de Bases , Capsicum/inmunología , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutagénesis Insercional , Mapeo Físico de Cromosoma , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia , Xanthomonas campestris/metabolismo
7.
Mol Plant Pathol ; 10(2): 175-88, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19236567

RESUMEN

Xanthomonas campestris pv. vesicatoria secretes at least 20 effector proteins through the type III secretion system directly into plant cells. In this study, we uncovered virulence activities of the effector proteins AvrBs1, AvrBs3 and AvrBs4 using Agrobacterium-mediated transient expression of the corresponding genes in Nicotiana benthamiana, followed by microscopic analyses. We showed that, in addition to the nuclear-localized AvrBs3, the effector AvrBs1, which localizes to the plant cell cytoplasm, also induces a morphological change in mesophyll cells. Comparative analyses revealed that avrBs3-expressing plant cells contain highly active nuclei. Furthermore, plant cells expressing avrBs3 or avrBs1 show a decrease in the starch content in chloroplasts and an increased number of vesicles, indicating an enlargement of the central vacuole and the cell wall. Both AvrBs1 and AvrBs3 cause an increased ion efflux when expressed in N. benthamiana. By contrast, expression of the avrBs3 homologue avrBs4 leads to large catalase crystals in peroxisomes, suggesting a possible virulence function of AvrBs4 in the suppression of the plant defence responses. Taken together, our data show that microscopic inspection can uncover subtle and novel virulence activities of type III effector proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Xanthomonas/patogenicidad , Núcleo Celular/ultraestructura , Iones , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Hojas de la Planta/microbiología , Hojas de la Planta/ultraestructura , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Nicotiana/citología , Nicotiana/microbiología , Nicotiana/ultraestructura , Transcripción Genética , Vacuolas/ultraestructura , Virulencia
8.
Science ; 318(5850): 645-8, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17962564

RESUMEN

Plant disease resistance (R) proteins recognize matching pathogen avirulence proteins. Alleles of the pepper R gene Bs3 mediate recognition of the Xanthomonas campestris pv. vesicatoria (Xcv) type III effector protein AvrBs3 and its deletion derivative AvrBs3Deltarep16. Pepper Bs3 and its allelic variant Bs3-E encode flavin monooxygenases with a previously unknown structure and are transcriptionally activated by the Xcv effector proteins AvrBs3 and AvrBs3Deltarep16, respectively. We found that recognition specificity resides in the Bs3 and Bs3-E promoters and is determined by binding of AvrBs3 or AvrBs3Deltarep16 to a defined promoter region. Our data suggest a recognition mechanism in which the Avr protein binds and activates the promoter of the cognate R gene.


Asunto(s)
Proteínas Bacterianas/metabolismo , Capsicum/genética , Capsicum/microbiología , Genes de Plantas , Oxigenasas de Función Mixta/genética , Regiones Promotoras Genéticas , Xanthomonas campestris/patogenicidad , Alelos , Proteínas Bacterianas/genética , Secuencia de Bases , Cromosomas Artificiales Bacterianos , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/química , Datos de Secuencia Molecular , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Nicotiana/genética , Transcripción Genética , Transformación Genética , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
9.
Science ; 318(5850): 648-51, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17962565

RESUMEN

Pathogenicity of many Gram-negative bacteria relies on the injection of effector proteins by type III secretion into eukaryotic cells, where they modulate host signaling pathways to the pathogen's benefit. One such effector protein injected by Xanthomonas into plants is AvrBs3, which localizes to the plant cell nucleus and causes hypertrophy of plant mesophyll cells. We show that AvrBs3 induces the expression of a master regulator of cell size, upa20, which encodes a transcription factor containing a basic helix-loop-helix domain. AvrBs3 binds to a conserved element in the upa20 promoter via its central repeat region and induces gene expression through its activation domain. Thus, AvrBs3 and likely other members of this family provoke developmental reprogramming of host cells by mimicking eukaryotic transcription factors.


Asunto(s)
Proteínas Bacterianas/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Capsicum/genética , Capsicum/microbiología , Proteínas de Plantas/fisiología , Xanthomonas campestris/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Capsicum/citología , Aumento de la Célula , Tamaño de la Célula , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Datos de Secuencia Molecular , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Nicotiana/genética , Transcripción Genética , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...