Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 35(1): 1854-1865, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32981382

RESUMEN

In continuity of our search for novel anticancer agents acting as procaspase activators, we have designed and synthesised two series of (E)-N'-benzylidene-carbohydrazides (4a-m) and (Z)-N'-(2-oxoindolin-3-ylidene)carbohydrazides (5a-g) incorporating 1-(4-chlorobenzyl)-1H-indole core. Bioevaluation showed that the compounds, especially compounds in series 4a-m, exhibited potent cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). Within series 4a-m, compounds with 2-OH substituent (4g-i) exhibited very strong cytotoxicity in three human cancer cell lines assayed with IC50 values in the range of 0.56-0.83 µM. In particular, two compounds 4d and 4f bearing 4-Cl and 4-NO2 substituents, respectively, were the most potent in term of cytotoxicity with IC50 values of 0.011-0.001 µM. In caspase activation assay, compounds 4b and 4f were found to activate caspase activity by 314.3 and 270.7% relative to PAC-1. This investigation has demonstrated the potential of these simple acetohydrazides, especially compounds 4b, 4d, and 4f, as anticancer agents.


Asunto(s)
Antineoplásicos/síntesis química , Inhibidores de Caspasas/síntesis química , Caspasas Iniciadoras/metabolismo , Hidrazinas/síntesis química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Inhibidores de Caspasas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Hidrazinas/farmacología , Isatina/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
2.
RSC Adv ; 10(73): 45199-45206, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516257

RESUMEN

In the present study, a series of 6-substituted aminoindazole derivatives were designed, synthesized, and evaluated for bio-activities. The compounds were initially designed as indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors based on the structural feature of five IDO1 inhibitors, which are currently on clinical trials, and the important anticancer activity of the indazole scaffold. One of them, compound N-(4-fluorobenzyl)-1,3-dimethyl-1H-indazol-6-amine (36), exhibited a potent anti-proliferative activity with an IC50 value of 0.4 ± 0.3 µM in human colorectal cancer cells (HCT116). This compound also remarkably suppressed the IDO1 protein expression. In the cell-cycle studies, the suppressive activity of compound 36 in HCT116 cells was related to the G2/M cell cycle arrest. Altogether, the current findings demonstrate that compound 36 would be promising for further development as a potential anticancer agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...