Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 429: 128277, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35074753

RESUMEN

Combined sewage overflows (CSOs) have become an important source of antibiotic resistance genes (ARGs) in the environment, while the distribution and dynamics of antibiotic resistome in the CSOs events have not been well understood. This study deciphered the profiles of antibiotic resitome in the CSOs based on metagenomics analysis from reads to metagenome assembly genomes (MAGs), and the dynamical changes of ARGs were clarified through continuous monitoring of the CSO event. Results showed that antibiotic inactivation was the dominant resistance mechanism, and sulfonamide, aminoglycoside along with multidrug resistance were the dominant antibiotic resistance types. It was speculated that the antibiotic resistome were generally determined by sewer sediment flushed out along with the CSOs not domestic sewage in the pipes. The host range and mobility of the antibiotic resistome were determined at contigs level, and the hosts mainly belonged to the Proteobacteria with the genus of Pseudomonas, Escherichia, Enterobacter and Aeromonas being dominant. The transposase (tnpA), IS91 and integrons were mobile genetic elements (MGEs) located together with ARGs, and a MAG carrying 32 ARGs and 140 VFGs was assembled. Although microbial community contributed most to the changes of antibiotic resistome in the CSOs directly, the risks caused by the MGEs should be paid more attention.


Asunto(s)
Metagenoma , Metagenómica , Antibacterianos/farmacología , Genes Bacterianos , Metagenómica/métodos , Aguas del Alcantarillado/microbiología
2.
J Environ Manage ; 303: 114268, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894491

RESUMEN

Significant management needs raised in urban sewer system to facilitate urban resilience to rainstorm. The work investigated the effects of temporal evolution of rainfall on hydrograph and pollutant discharge of CSO over an intensive observation period of 12 months, with special attention to differences in temporal scale for supporting management decision making. The characteristics of rainfall in different temporal scales helped overflow-risk identification and assessment. Prolonged dry seasons over 112 days in the CSO monitored year 2018 increased the sediment buildup in the pipes. The built sediment was mostly flushed out to overflow (and the treatment facility) by initial rainfall during 47 h. Following CSO hydraulics and pollutant discharge follows initial peak patterns which responded to rainfall patterns. Results of Redundancy analysis and network analysis showed that the combined effects of rainfall, urbanization, and sediments as "CSO troika" are the driving forces for CSO pollutants in the long-term. The improved characterization of CSO events and the associated pollutants has refined our understanding of how overflow hydrograph and pollutant discharge responds to rainfall temporally, which methodology supported decision making in the combining source/process control with terminal management for facilizing urban resilience.


Asunto(s)
Contaminantes Ambientales , Lluvia , Monitoreo del Ambiente , Estaciones del Año , Aguas del Alcantarillado/análisis
3.
Environ Int ; 133(Pt B): 105183, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31675559

RESUMEN

Swine wastewater is an important reservoir of spread antibiotic resistance to the environment. Intra- and extracellular antibiotic resistance genes (iARGs and eARGs) were quantified during two typical swine wastewater treatment processes including a sequencing membrane bioreactor (SMBR) at pilot-scale and anaerobic-anoxic-oxic (A2O) at full-scale. The concentrations of iARGs and eARGs in raw wastewater were 3.42E+09 and 3.79E+07 copies/mL, respectively. The compositions were different between iARGs and eARGs. SMBR showed 0.63 log higher removals in the concentrations of iARG than A2O, while similar removal effects (3.01-3.44 log copies/mL) of eARGs were performed by the two processes. It suggested that membrane separation had advantages in the concentration removals of iARG rather than eARG. sul1 took the dominance in eARGs in effluent and had positive correlations with intI1, which indicated the risk of horizontal gene transfer of eARGs after wastewater discharge. Microbial community structures were estimated by 16S rRNA gene sequencing with both intra- and extracellular DNA (iDNA and eDNA). Compared between the effluent samples of the two treatment processes, microbial community structures estimated by iDNA had great differences, however which were similar for eDNA. Microbial community and water-quality parameters were the major influencing factors on ARG occurrences during swine wastewater treatment.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Microbiana , Microbiota , Animales , Reactores Biológicos , ADN Bacteriano/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , ARN Ribosómico 16S/genética , Porcinos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...