Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arch Virol ; 169(5): 106, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644429

RESUMEN

In this study, conducted at the National Institute of Health, Islamabad, during an outbreak of human respiratory syncytial virus (hRSV) from December 2022 to January 2023, the first whole-genome sequences of hRSV isolates from Islamabad, Pakistan, were determined. Out of 10 positive samples, five were sequenced, revealing the presence of two genotypes: RSV-A (GA2.3.5, ON1 strain) and RSV-B (GB5.0.5.a, BA-10 strain). A rare non-synonymous substitution (E232G) in G the protein and N276S in the F protein were found in RSV-A. In RSV-B, the unique mutations K191R, Q209R, and I206M were found in the F protein. These mutations could potentially influence vaccine efficacy and viral pathogenicity. This research underscores the importance of genomic surveillance for understanding RSV diversity and guiding public health responses in Pakistan.


Asunto(s)
Brotes de Enfermedades , Genoma Viral , Genotipo , Filogenia , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Pakistán/epidemiología , Humanos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/clasificación , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Genoma Viral/genética , Mutación , Secuenciación Completa del Genoma , Genómica , Femenino , Lactante , Masculino , Proteínas Virales de Fusión/genética , Preescolar
2.
Environ Sci Pollut Res Int ; 31(10): 15364-15378, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38294649

RESUMEN

This research aimed to assess the effectiveness of Metarhizium robertsii, diatomaceous earth (Protect-It), and lambda-cyhalothrin, for the long-term protection of stored wheat against three destructive grain insect pests, Rhyzopertha dominica, Tribolium castaneum, and Trogoderma granarium. Different treatments were applied, both alone and in paired combinations in laboratory and persistence trials. Single treatments exhibited significantly lower mortality rates in comparison to the paired treatments for all tested insect species. Among the single treatments, lambda-cyhalothrin (Lamb) resulted in significantly higher mortality rates in laboratory trials, followed by diatomaceous earth (DE) and M. robertsii (Mr), with insignificant differences between Mr and DE. Evidently, DE exhibited the highest persistence after 120 days of storage for all insect species and initial exposures, although variations in mortality rates among treatments were mostly insignificant. Overall, the most effective treatment in terms of mortality in laboratory, and persistence trials, and progeny production was DE + Lamb, followed by Mr + Lamb, and Mr + DE for all tested insect species. In general, the most susceptible insect species was R. dominica, followed by T. castaneum and T. granarium. This research highlights the effectiveness of M. robertsii, DE, and lambda-cyhalothrin in providing prolonged protection of stored wheat against all the examined grain insect species.


Asunto(s)
Escarabajos , Insecticidas , Nitrilos , Piretrinas , Animales , Ovinos , Tierra de Diatomeas , Insectos , Grano Comestible
3.
J Med Virol ; 95(2): e28458, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36597899

RESUMEN

Acute gastroenteritis is one of the most common diseases in infants and children in developing countries including Pakistan. In Pakistan, rotavirus (RVA) is known to contribute significantly to pediatric diarrheal illness, but the contribution of other viruses is still unclear. In the current study we have identified a case of mixed infection of norovirus (NoV) and sapovirus (SaV) in a 2-year-old child with acute gastroenteritis. The sample was initially processed for the detection of group A RVA through ELISA followed by NoV using RT-PCR assay. The sample tested positive for NoV RNA and was later subjected to whole-genome sequencing using meta-genome approach on Miseq (Illumina) platform. Sequencing results revealed GII.15 genotype of NoV that clustered with viruses from China and USA from 2017 to 2021. We also retrieved the complete genome of SaV (GI.1 genotype) from the same sample and phylogenetic analysis showed clustering with strains reported from Japan, South Korea, US, and Taiwan during 2012-2016. This is the first report from Pakistan that confirms coinfection of NoV and SaV and elucidates their whole genomes. We recommend initiation of NoV and SaV surveillance program to ascertain disease burden and explore genetic diversity, especially as RVA vaccines have been included in national immunization program.


Asunto(s)
Infecciones por Caliciviridae , Coinfección , Gastroenteritis , Norovirus , Sapovirus , Virus , Lactante , Niño , Humanos , Preescolar , Sapovirus/genética , Norovirus/genética , Filogenia , Pakistán , Infecciones por Caliciviridae/epidemiología , Genotipo , Heces
4.
Vaccines (Basel) ; 11(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36680008

RESUMEN

Pakistan, a dengue-endemic country, has encountered several outbreaks during the past decade. The current study aimed to explore the serotype and genomic diversity of dengue virus responsible for the 2022 outbreak in Pakistan. From August to October 2022, NS-1 positive blood samples (n = 343) were collected from dengue patients, among which, (85%; n = 293) were positive based on RT-PCR. In terms of gender and age, dengue infection was more prevalent in male patients (63%; n = 184), with more adults (21-30 years; n = 94) being infected. The serotyping results revealed DENV-2 to be the most predominant serotype (62%; n = 183), followed by DENV-1 (37%; n = 109) and DENV-3 (0.32%; n = 1). Moreover, a total of 10 samples (DENV-2; n = 8, DENV-1; n = 2) were subjected to whole-genome sequencing. Among these, four were collected in early 2022, and six were collected between August and October 2022. Phylogenetic analysis of DENV-2 sequenced samples (n = 8) revealed a monophyletic clade of cosmopolitan genotype IVA, which is closely related to sequences from China and Singapore 2018, and DENV-1 samples (n = 2) show genotype III, which is closely related to Pakistan isolates from 2019. We also reported the first whole genome sequence of a coinfection case (DENV1-DENV2) in Pakistan detected through a meta-genome approach. Thus, dengue virus dynamics reported in the current study warrant large-scale genomic surveillance to better respond to future outbreaks.

5.
Front Public Health ; 10: 987452, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249252

RESUMEN

COVID-19 pandemic has severely affected Pakistan with 1,557,134 cases as of August 4, 2022. However, the data regarding breakthrough infections in Pakistan is scant. Hence, the objective was to analyze SARS-CoV-2 breakthrough infections with respect to vaccines and variants during the fifth wave in Pakistan. Therefore, the Department of Virology (NIH, Pakistan) genotyped 2,467 randomly selected individuals between November 2021 and February 2022 using the SNPsig® SARS-CoV-2 (EscapePLEX) kit (PrimerDesign, UK). P681R and K417N mutations were used to distinguish delta and omicron. Data on the patient's age, gender, date of collection, variant, and vaccination status were analyzed using Statistical Package for Social Sciences (SPSS) software. Among 2,467 genotyped samples, Omicron was detected in 58.6% (n = 1445), Delta in 40.4% (n = 998) and undetermined/wildtype variant in 24 samples. The vaccination status of omicron-positive patients showed (49.7%; n = 718/1445) and Delta-positive patients (39.67%; n = 396/998) to be fully vaccinated. Of note, a high percentage 85% of breakthrough cases (n = 947) were identified among fully vaccinated individuals (n = 1114). Among them, 85.9% (n = 617/718) belonged to omicron and 83.3% (n = 330/396) to delta. Moreover, 76.7% (n = 855) of vaccinated individuals (n = 1114) received Sinopharm (n = 432) and Sinovac (n = 423) vaccines. The majority of breakthrough subjects who contracted Omicron were vaccinated with Sinopharm (93.0%, n = 256) and delta with Cansino (100%, n = 44). Individuals vaccinated with Sinovac showed the most frequent breakthrough cases for both Omicron and Delta variant between the 4th and 6th months (n = 278) after primary vaccination as compared to the 7th to 9th months (n = 24) category. While in case of Sinopharm, maximum breakthrough cases occurred between 7th to 9th months (n = 234) as compared to the 4th to 6th months (n = 120) after primary vaccination. Omicron and Delta breakthrough cases in men (n = 364 and 193) are more frequently seen than women (n = 253 and 138) respectively and breakthrough majority cases (n = 392) occurred in individuals aged 18-33 years. Breakthrough cases limiting monitoring in Pakistan impose a substantial constraint on policymakers' ability to take timely effective decisions. Since the current study consists of only a 2,467-genotyped sample, comprehensive data should be analyzed.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Femenino , Humanos , Masculino , Pakistán/epidemiología , Pandemias , SARS-CoV-2/genética
6.
Curr Microbiol ; 79(2): 48, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982246

RESUMEN

This study aimed to characterize the whole genome of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) isolated from an oropharyngeal swab specimen of a Pashtun Pakistani patient using next-generation sequencing. Upon comparing the SARS-CoV2 genome to the reference genome, a total of 10 genetic variants were identified. Among the 10 genetic variants, 1 missense mutation (c.1139A > G, p.Lys292Glu) in the Open Reading Frame 1ab (ORF1ab) positioned at 112 in the non-structural protein 2 (NSP2) was found to be unique. Phylogenetic analysis (n = 84) revealed that the current SARS-CoV2 genome was closely clustered with 8 Pakistani strains belonging to Punjab, Federal Capital, Azad Jammu and Kashmir (AJK), and Khyber Pakhtunkhwa (KP). In addition, the current SARS-CoV2 genome was very similar to the genome of SARS-CoV2 reported from Guam, Taiwan, India, the USA, and France. Overall, this study reports a slight mismatch in the SARS-CoV2 genome, indicating the presence of a single unique missense mutation. However, phylogenetic analysis revealed that the current SARS-CoV2 genome was closely clustered with 8 other Pakistani strains.


Asunto(s)
COVID-19 , ARN Viral , Genoma Viral , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pakistán , Filogenia , SARS-CoV-2
7.
J Med Virol ; 94(3): 1115-1129, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34726786

RESUMEN

SARS-CoV-2 variants of concern (VOCs) have emerged worldwide and gained significant importance due to their high transmissibility and global spread, thus meriting close monitoring. In Pakistan, limited information is available on circulation of these variants as the alpha variant has been reported the main circulating lineage. The current study was designed to detect and explore the genomic diversity of SARS-CoV-2 lineages circulating during the third wave of the pandemic in the indigenous population. From May 01 to June 09, 2021, a total of 16 689 samples were tested using TaqPath™ COVID-19 kit for the presence of SARS-CoV-2. Overall, 2562 samples (15.4%) were COVID-19 positive. Out of these positive samples, 2124 (12.7%) did not show the spike gene amplification (spike gene target failure ([SGTF]), whereas 438 (2.6%) showed spike gene amplification (non-SGTF). A subset (n = 58/438) of non-SGTF samples were randomly selected for whole-genome sequencing. Among VOCs, 45% (n = 26/58) were delta, 46% (n = 27/58) were beta, and one was gamma variant. The delta variant cases were reported mainly from Islamabad (n = 15; 58%) followed by Rawalpindi and Azad Kashmir (n = 1; 4% each). Beta variant cases originated mainly from Karachi (n = 8; 30%) and Islamabad (n = 11; 41%) and the gamma variant case was reported in a traveler from Italy. The delta, beta, and gamma variants possessed lineage-specific spike mutations. Notably, two rare mutations (E484Q and L5F) were found in the delta variant. Furthermore, in the beta variant, two significant rare non-synonymous spike mutations (A879S and K444R) were also reported. High prevalence of beta and delta variants in local population may increase the number of cases in the near future and provides an early warning to national health authorities to take timely decisions and devise suitable interventions to contain a possible fourth wave.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Genómica , Humanos , Pakistán/epidemiología , SARS-CoV-2/genética
8.
Allergol Immunopathol (Madr) ; 49(1): 159-164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33528945

RESUMEN

Coronavirus disease 2019 (COVID-19) is a disease caused by a new strain of coronavirus named as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Globally, since the outbreak, more than seven million confirmed cases of COVID-19 have been reported. The rapid spread and increase in the number of new cases is due to person-to-person transmission. To further control its transmission, early laboratory diagnosis of both asymptomatic and symptomatic patients is crucial. Presently, the COVID-19 diagnosis of infected individuals is dependent on computed tomography scanning and real-time polymerase chain reaction (PCR). The latter is considered more sensitive and efficient for early diagnosis. In this review, general comparisons are made (cases, fatality rate, incubation period, clinical features, and reservoirs) and diagnostic laboratory procedures (specimens, extraction methods, and positive rates by real-time PCR) are compared between SARS, Middle East Respiratory Syndrome, and SARS-2. In total, 8982 SARS-2 suspected patients specimen data were retrieved, in which 40.9% (n = 3678) were detected as positive by real-time PCR. The specimen-wise high detection rate was observed from bronchoalveolar lavage, followed by saliva, nasal swabs, and sputum. As the COVID-19 cases are persistently increasing, the selection of appropriate specimens and laboratory assay would help in rapid and timely diagnosis.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/aislamiento & purificación , Lavado Broncoalveolar , COVID-19/fisiopatología , COVID-19/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Humanos , Nasofaringe/virología , SARS-CoV-2/genética , Saliva/virología , Síndrome Respiratorio Agudo Grave/diagnóstico , Síndrome Respiratorio Agudo Grave/virología , Esputo/virología
9.
Allergol. immunopatol ; 49(1): 159-164, ene.-feb. 2021. tab
Artículo en Inglés | IBECS | ID: ibc-197113

RESUMEN

Coronavirus disease 2019 (COVID-19) is a disease caused by a new strain of coronavirus named as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Globally, since the outbreak, more than seven million confirmed cases of COVID-19 have been reported. The rapid spread and increase in the number of new cases is due to person-to-person transmission. To further control its transmission, early laboratory diagnosis of both asymptomatic and symptomatic patients is crucial. Presently, the COVID-19 diagnosis of infected individuals is dependent on computed tomography scanning and real-time polymerase chain reaction (PCR). The latter is considered more sensitive and efficient for early diagnosis. In this review, general comparisons are made (cases, fatality rate, incubation period, clinical features, and reservoirs) and diagnostic laboratory procedures (specimens, extraction methods, and positive rates by real-time PCR) are compared between SARS, Middle East Respiratory Syndrome, and SARS-2. In total, 8982 SARS-2 suspected patients specimen data were retrieved, in which 40.9% (n = 3678) were detected as positive by real-time PCR. The specimen-wise high detection rate was observed from bronchoalveolar lavage, followed by saliva, nasal swabs, and sputum. As the COVID-19 cases are persistently increasing, the selection of appropriate specimens and laboratory assay would help in rapid and timely diagnosis


No disponible


Asunto(s)
Humanos , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Pandemias , Betacoronavirus , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
10.
Hemoglobin ; 44(4): 254-258, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32691635

RESUMEN

ß-Thalassemia (ß-thal) is a common monogenic disease with ethnic-specific mutations on the HBB gene throughout the world. The reported mutations either reduce the expression or completely inactivate the HBB gene. In Pakistan, the prevalence of ß-thal is high due to consanguineous marriages. Accurate identification of mutations in carriers is imperative for prevention of ß-thal in subsequent generations. To overcome the limitations of traditional testing methods for ß-thal, a next-generation sequencing (NGS)-based diagnostic test was designed and validated by sequencing the entire HBB gene. The primer set covering the entire HBB gene was designed and validated in a Pashtun ß-thalassemic family. The polymerase chain reaction (PCR) product was sequenced using an Illumina MiSeq platform. A homozygous pathogenic insertion of A>AC/AC (rs35699606) was detected in an affected member of the family, while unaffected members were heterozygous for it. In addition, all family members were homozygous for the synonymous variant, A>G/G (rs713040), except the father who was heterozygous for it. We sequenced the entire HBB gene using the NGS-based test, which is highly sensitive, robust and specific for the diagnosis and screening of ß-thal in Pakistan, especially for families practicing consanguineous marriages.


Asunto(s)
Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Globinas beta/genética , Talasemia beta/diagnóstico , Talasemia beta/genética , Alelos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Pakistán , Linaje , Fenotipo , Reproducibilidad de los Resultados , Talasemia beta/sangre
11.
Pak J Med Sci ; 35(1): 17-22, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881389

RESUMEN

OBJECTIVE: In Pakistan, 74% of consanguineous marriages are among the first cousins. Continuity of consanguineous marriages over generations increases the risk of recessive diseases such as deafness. The objective of this study was to investigate genetic origin of Pakistani deaf brothers with parents of consanguineous marriage. METHODS: DNA was extracted from the blood through Qiagen kit. Paired-end sequencing library was prepared according to protocol of Illumina's TruSight Rapid Capture kit and TruSight Inherited Disease Panel. Library was normalized and used for Next Generation Sequencing through MiSeq. NGS data were analyzed using various bioinformatics tools. RESULTS: Both brothers were found to have novel deleterious mutation in MYO7A (c.2476G>A) while the younger brother had additional novel deleterious mutation in TH (c.43C>T) and EVC2 (c.2614C>T) genes. CONCLUSION: It is concluded that in addition to novel mutations in MYO7A, TH and EVC2, the CDH23 and GJB2 can also be responsible for deafness in the family with consanguineous marriages.

12.
Oral Oncol ; 70: 23-28, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28622887

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. It accounts for 2.5% of all new cancer cases and 1.9% of all cancer deaths annually. More than 90% of oral cancers (occurring in the mouth, lip, and tongue) are oral squamous cell carcinoma. The incidence rate of oral cancer varies widely throughout the world, with an evident prevalence in South Asian countries. This high incidence occurs in correlation with oral cancer-associated behaviors such as alcohol, tobacco use. Researchers have reported that these behaviors lead to genetic variations in tumor suppressor genes (APC, p53), proto-oncogenes (Myc), oncogene (Ras) and genes controlling normal cellular processes (EIF3E, GSTM1). Processes such as segregation of chromosomes, genomic copy number, loss of heterozygosity, telomere stabilities, regulations of cell-cycle checkpoints, DNA damage repairs and defects in notch signaling pathways are involved in causing oral cancer. In order to develop preventive and therapeutic options, it is necessary to comprehend the basic molecular mechanisms forcing oral tumorigenesis. This review examines, in detail, the mechanisms of genetic alteration which are considered to be responsible for the initiation of oral cancer.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas/patología , Puntos de Control del Ciclo Celular , Epigénesis Genética , Genes Supresores de Tumor , Predisposición Genética a la Enfermedad , Humanos , Pérdida de Heterocigocidad , Neoplasias de la Boca/patología , Oncogenes , Receptores Notch/metabolismo , Transducción de Señal , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...