Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Rep ; 9: 1501-1513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518382

RESUMEN

Lead (Pb2+), a ubiquitously present heavy metal toxin, has various detrimental effects on memory and cognition. However, the molecular processes affected by Pb2+ causing structural and functional anomalies are still unclear. To explore this, we employed behavioral and proteomic approaches using rat pups exposed to lead acetate through maternal lactation from postnatal day 0 (P0) until weaning. Behavioral results from three-month-old rats clearly emphasized the early life Pb2+ exposure induced impairments in spatial cognition. Further, proteomic analysis of synaptosomal fractions revealed differential alteration of 289 proteins, which shows functional significance in elucidating Pb2+ induced physiological changes. Focusing on the association of Small Ubiquitin-like MOdifier (SUMO), a post-translational modification, with Pb2+ induced cognitive abnormalities, we identified 45 key SUMO target proteins. The significant downregulation of SUMO target proteins such as metabotropic glutamate receptor 3 (GRM3), glutamate receptor isoforms 2 and 3 (GRIA 2 and GRIA3) and flotilin-1 (FLOT1) indicates SUMOylation at the synapses could contribute to and drive Pb2+ induced physiological imbalance. These findings identify SUMOylation as a vital protein modifier with potential roles in hippocampal memory consolidation and regulation of cognition. Data availbility: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD034212".

2.
Exp Eye Res ; 202: 108318, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091432

RESUMEN

Mitochondrial membrane potential (Ψm) is a critical parameter that can be used to determine cellular well-being. As it is a direct measure of the cell's ATP generating capability, in recent years, this key component in cell biology has been the subject of thousands of biochemical and biophysical investigations. Membrane-permeant fluorescent dyes, like tetramethylrhodamine ethyl ester (TMRE), have been predominantly employed to monitor ΔΨm in cells. These dyes are typically lipophilic cationic compounds that equilibrate across membranes in a Nernstian fashion, thus accumulating into the mitochondrial membrane matrix space in inverse proportion to Ψm. However, the bath loading method practiced for labelling tissue slices with these cationic dyes poses limitations in the form of non-specificity and low signal to noise ratio, which compromises the precision of the results. Therefore, we introduce an alternative way for TMRE loading to image the ΔΨm in tissue slices by utilizing a low resistance glass pipette attached to a pressure injector. This method shows highly precise fluorescent dye labelling of the mitochondria and offers maximum output intensity, in turn enhancing signal to noise ratio.


Asunto(s)
Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Retina/metabolismo , Animales , Colorantes Fluorescentes/metabolismo , Masculino , Imagen Óptica/métodos , Compuestos Organometálicos/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
3.
Neuroscience ; 406: 140-149, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30826521

RESUMEN

Diabetic retinopathy, a leading cause of vision loss, was considered as a solely vascular disorder but some recent studies suggest that retinal neurons may be affected much before the appearance of vascular lesions. However, the cellular processes involved in diabetes-induced degeneration of retinal neurons are poorly understood. Calcium (Ca2+) signaling plays a key role in normal functioning of neurons, and its dysregulation may lead to degeneration of neurons. Mitochondria are crucial components involved in the regulation of intracellular Ca2+ signaling. In this study, we have investigated the effects of diabetes on Ca2+ signaling in retinal neurons. The study was performed in rat retinal neurons cultured in high glucose condition (HGC) for 7-14 days and in acutely prepared retinal slices isolated from diabetic rats. When Ca2+ influx was induced by depolarization of neurons with 60 mM KCl in HGC neurons, the Ca2+ rise was sustained for a much longer duration as compared to controls, suggesting perturbation of Ca2+ buffering. In addition, HGC neurons also showed notably enhanced Ca2+ load in the mitochondria, which was accompanied by depolarization of mitochondrial membrane and enhanced reactive oxygen species formation. Similar results were obtained in acutely prepared retinal slices from control and diabetic rats. The depolarization of mitochondrial membrane was more pronounced in the neurons of the inner nuclear layer of diabetic rats. The physiological changes in mitochondria were observed as early as 9 weeks post diabetes induction. Thus, we report here that the intracellular Ca2+ signaling and mitochondrial function in retinal neurons are altered at an early stage of diabetes.


Asunto(s)
Señalización del Calcio/fisiología , Diabetes Mellitus Experimental/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/fisiología , Neuronas Retinianas/fisiología , Animales , Células Cultivadas , Diabetes Mellitus Experimental/patología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
4.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1315-1325, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28827166

RESUMEN

Lysozyme amyloidosis (ALys) is a disease of the gastrointestinal tract, liver and kidneys, which is caused by the accumulation of insoluble fibrils of lysozyme in the tissues of above organs. The ALys can be cured by disintegration and clearance of the fibrils from the affected tissues and organs. It is thought that protein fibrils are extremely stable. Consequently, small molecule-induced dissociation of fibrils under physiological conditions is really challenging. Here, we report kinetic and thermodynamic analyses of hemin-induced dissociation of hen egg white lysozyme amyloid fibrils. We examined the effect of hemin on the kinetics of dissociation of lysozyme fibrils. We observed that the hemin binding dissociates fibrils in a concentration dependent manner within a reasonable time. Studies of structural, morphological properties and gel filtration chromatography indicate that fibrils dissociate mainly into monomeric species. The conformational, hydrodynamic, unfolding and stability studies of the resolubilized proteins show that dissociated monomers possess characteristics of partially folded intermediate state of the protein. We also find that hemin-induced fibril dissociation mainly depends on the kinetic and thermodynamic stability of the fibrils. These results suggest that non-toxic derivatives of hemin and other porphyrins could pave a way for therapeutic intervention in amyloidosis and related pathologies.


Asunto(s)
Amiloide/química , Hemina/química , Muramidasa/química , Amiloide/ultraestructura , Animales , Pollos , Concentración de Iones de Hidrógeno , Cinética , Unión Proteica , Desplegamiento Proteico , Soluciones , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...