Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MethodsX ; 12: 102708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38651001

RESUMEN

Silene latifolia and S. dioica are model systems in studies of plant reproduction, chromosome evolution and sexual dimorphism, but sexing of plants based on morphology is only possible from flowering stage onwards. Both species show homogametic females (XX) and heterogametic males (XY).•Here we developed two assays (primer pairs ss816 and ss441) for molecular sexing of S. latifolia and S. dioica, targeting length polymorphisms between the X and Y-linked copies of the spermidine synthase gene.The two assays were successful in identifying known (flowering-stage) males and females from UK and Spanish populations, with an error rate of 3.1% (ss816; successful for both species) and 0% (ss441, only successful for S. latifolia). Our assays therefore represent novel tools for rapid, robust and simple determination of the genotypic sex of S. latifolia and S. dioica.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38584459

RESUMEN

The Rüppell's fox (Vulpes rueppellii) inhabits desert regions across North Africa, the Arabian Peninsula and southwestern Asia. Its phylogenetic relationship with other fox species, especially within the phylogeographic context of its sister species, V. vulpes, remain unclear. We here report the sequencing and de-novo assembly of the first annotated mitogenome of V. rueppellii, analysed with data from other foxes (tribe Vulpini, subfamily Caninae). We used four bioinformatic approaches to reconstruct the V. rueppellii mitogenome, obtaining identical sequences except for the incompletely assembled tandem-repeat region within the D-loop. The mitogenome displayed an identical organization, number and length of genes as V. vulpes. We found high support for clustering of both known subclades of V. rueppellii within the Palearctic clade of V. vulpes, rendering the latter species paraphyletic, consistent with previous analyses of shorter mtDNA fragments. More work is needed for a full understanding of the evolutionary drivers and consequences of hybridization in foxes.

3.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38059490

RESUMEN

Repeat spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into new hosts has highlighted the critical role of cross-species transmission of coronaviruses and establishment of new reservoirs of virus in pandemic and epizootic spread of coronaviruses. Species particularly susceptible to SARS-CoV-2 spillover include Mustelidae (mink, ferrets and related animals), cricetid rodents (hamsters and related animals), felids (domestic cats and related animals) and white-tailed deer. These predispositions led us to screen British wildlife with sarbecovirus-specific quantitative PCR and pan coronavirus PCR assays for SARS-CoV-2 using samples collected during the human pandemic to establish if widespread spillover was occurring. Fourteen wildlife species (n=402) were tested, including: two red foxes (Vulpes vulpes), 101 badgers (Meles meles), two wild American mink (Neogale vison), 41 pine marten (Martes martes), two weasels (Mustela nivalis), seven stoats (Mustela erminea), 108 water voles (Arvicola amphibius), 39 bank voles (Myodes glareolous), 10 field voles (Microtus agrestis), 15 wood mice (Apodemus sylvaticus), one common shrew (Sorex aranaeus), two pygmy shrews (Sorex minutus), two hedgehogs (Erinaceus europaeus) and 75 Eurasian otters (Lutra lutra). No cases of SARS-CoV-2 were detected in any animals, but a novel minacovirus related to mink and ferret alphacoronaviruses was detected in stoats recently introduced to the Orkney Islands. This group of viruses is of interest due to pathogenicity in ferrets. The impact of this virus on the health of stoat populations remains to be established.


Asunto(s)
Alphacoronavirus , COVID-19 , Ciervos , Nutrias , Virus , Animales , Humanos , Gatos , Ratones , Animales Salvajes , Hurones , Visón , SARS-CoV-2/genética , COVID-19/veterinaria , Arvicolinae
4.
Ecol Evol ; 13(12): e10743, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38152347

RESUMEN

Body condition in pelagic seabirds impacts key fitness-related traits such as reproductive performance and breeding frequency. Regulation of body condition can be especially important for species with long incubation periods and long individual incubation shifts between foraging trips. Here, we show that body condition of adult Red-billed Tropicbirds (Phaethon aethereus) at St Helena Island, South Atlantic Ocean, exhibited considerable variation between years (2013-2017) and between different stages of the breeding cycle. Females took the first incubation shift following egg laying, after which males and females alternated incubation shifts of varying length, ranging from <1 to 12 days. Body condition declined in both sexes during an incubation shift by an average of 22 g (2.83% of starting mass) per day and over the incubation period; mass loss was significantly greater during longer incubation shifts, later within a shift and later in the total incubation period. There was also significant differences in incubation behaviour and body condition between years; in 2015, coinciding with a moderate coastal warming event along the Angolan-Namibian coastlines, adults on average undertook longer incubation shifts than in other years and had lower body condition. This suggests that substantial between-year prey fluctuations in the Angola Benguela upwelling system may influence prey availability, in turn affecting incubation behaviour and regulation of body condition. Adults rearing chicks showed a significant reduction in body condition when chicks showed the fastest rate of growth. Chick growth rates during 2017 from two localities in the Atlantic Ocean: an oceanic (St Helena) versus neritic (Cabo Verde) population were similar, but chicks from St Helena were overall heavier and larger at fledging. Results from this multi-year study highlight that flexibility and adaptability in body condition regulation will be important for populations of threatened species to optimise resources as global climate change increasingly influences prey availability.

5.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37713621

RESUMEN

Conservation genetic analyses of many endangered species have been based on genotyping of microsatellite loci and sequencing of short fragments of mtDNA. The increase in power and resolution afforded by whole genome approaches may challenge conclusions made on limited numbers of loci and maternally inherited haploid markers. Here, we provide a matched comparison of whole genome sequencing versus microsatellite and control region (CR) genotyping for Eurasian otters (Lutra lutra). Previous work identified four genetically differentiated "stronghold" populations of otter in Britain, derived from regional populations that survived the population crash of the 1950s-1980s. Using whole genome resequencing data from 45 samples from across the British stronghold populations, we confirmed some aspects of population structure derived from previous marker-driven studies. Importantly, we showed that genomic signals of the population crash bottlenecks matched evidence from otter population surveys. Unexpectedly, two strongly divergent mitochondrial lineages were identified that were undetectable using CR fragments, and otters in the east of England were genetically distinct and surprisingly variable. We hypothesize that this previously unsuspected variability may derive from past releases of Eurasian otters from other, non-British source populations in England around the time of the population bottleneck. Our work highlights that even reasonably well-studied species may harbor genetic surprises, if studied using modern high-throughput sequencing methods.


Asunto(s)
Nutrias , Animales , Nutrias/genética , Reino Unido , ADN Mitocondrial/genética , Especies en Peligro de Extinción , Genómica
6.
J Gen Virol ; 104(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37319000

RESUMEN

Horseshoe bats are the natural hosts of the Sarbecovirus subgenus that includes SARS-CoV and SARS-CoV- 2. Despite the devastating impact of the COVID-19 pandemic, there is still little known about the underlying epidemiology and virology of sarbecoviruses in their natural hosts, leaving large gaps in our pandemic preparedness. Here we describe the results of PCR testing for sarbecoviruses in the two horseshoe bat species (Rhinolophus hipposideros and R. ferrumequinum) present in Great Britain, collected in 2021-22 during the peak of COVID-19 pandemic. One hundred and ninety seven R. hipposideros samples from 33 roost sites and 277 R. ferrumequinum samples from 20 roost sites were tested. No coronaviruses were detected in any samples from R. ferrumequinum whereas 44 and 56 % of individual and pooled (respectively) faecal samples from R. hipposideros across multiple roost sites tested positive in a sarbecovirus-specific qPCR. Full genome sequences were generated from three of the positive samples (and partial genomes from two more) using Illumina RNAseq on unenriched samples. Phylogenetic analyses showed that the obtained sequences belong to the same monophyletic clade, with >95 % similarity to previously-reported European isolates from R. hipposideros. The sequences differed in the presence or absence of accessory genes ORF 7b, 9b and 10. All lacked the furin cleavage site of SARS-CoV-2 spike gene and are therefore unlikely to be infective for humans. These results demonstrate a lack, or at least low incidence, of SARS-CoV-2 spill over from humans to susceptible GB bats, and confirm that sarbecovirus infection is widespread in R. hipposideros. Despite frequently sharing roost sites with R. ferrumequinum, no evidence of cross-species transmission was found.


Asunto(s)
COVID-19 , Quirópteros , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Humanos , Filogenia , Pandemias , COVID-19/epidemiología , SARS-CoV-2/genética
7.
Animals (Basel) ; 13(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36899724

RESUMEN

Cystic echinococcosis (hydatidosis) is a world-wide zoonotic disease of mainly humans, livestock and dogs, caused by Echinococcus granulosus. The disease can negatively impact food production and animal welfare and causes socio-economic hardship. Here, we aimed to identify the local bovine hydatid cyst fluid (BHCF) antigen for developing a sero-diagnostic assay to be used for the pre-slaughter screening of food animals. In total, 264 bovines approved for slaughter in Pakistan were subjected to serum collection and post-mortem screening for hydatid cysts. These cysts were assessed microscopically to assess fertility and viability, and by PCR for molecular confirmation of species. A BHCF antigen was identified from positive sera via SDS-PAGE, confirmed by Western blot, and quantified via a bicinchoninic acid (BCA) assay. The quantified crude BHCF antigen (iEg67 kDa) was then used in ELISA screening to test all sera collected from known positive and negative animals based on hydatid cyst presence/absence. Of the 264 bovines examined, 38 (14.4%) showed hydatid cysts during post-mortem examination. All of these individuals, plus an additional 14 (total: 52; 19.6%) tested positive based on less time-consuming ELISA examination. Based on ELISA, occurrence in females (18.8%) was significantly higher than in males (9.2%) and was higher in cattle (19.5%) compared to buffalo (9.5%). The infection rate increased with age in both host species: cumulatively, 3.6% in animals aged 2-3 years, 14.6% in 4-5-year-olds and 25.6% in 6-7-year-olds. The occurrence of cysts in cattle was significantly higher in the lungs (14.1%) compared to their livers (5.5%), whereas the opposite was true in buffalo (6.6% livers, 2.9% lungs). For both host species, most cysts in the lungs were fertile (65%), while the majority in the liver were sterile (71.4%). We conclude that the identified iEg67 kDa antigen is a strong candidate for the development of a sero-diagnostic screening assay for the pre-slaughter diagnosis of hydatidosis.

8.
Evol Appl ; 15(12): 2125-2141, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36540646

RESUMEN

Numerous terrestrial mammal species have experienced extensive population declines during past centuries, due largely to anthropogenic pressures. For some species, including the Eurasian otter (Lutra lutra), environmental and legal protection has more recently led to population growth and recolonization of parts of their historic ranges. While heralded as conservation success, only few such recoveries have been examined from a genetic perspective, i.e. whether genetic variability and connectivity have been restored. We here use large-scale and long-term genetic monitoring data from UK otters, whose population underwent a well-documented population decline between the 1950s and 1970s, to explore the dynamics of a population re-expansion over a 21-year period. We genotyped otters from across Wales and England at five time points between 1994 and 2014 using 15 microsatellite loci. We used this combination of long-term temporal and large-scale spatial sampling to evaluate 3 hypotheses relating to genetic recovery that (i) gene flow between subpopulations would increase over time, (ii) genetic diversity of previously isolated populations would increase and that (iii) genetic structuring would weaken over time. Although we found an increase in inter-regional gene flow and admixture levels among subpopulations, there was no significant temporal change in either heterozygosity or allelic richness. Genetic structuring among the main subpopulations hence remained strong and showed a clear historical continuity. These findings highlight an underappreciated aspect of population recovery of endangered species: that genetic recovery may often lag behind the processes of spatial and demographic recovery. In other words, the restoration of the physical connectivity of populations does not necessarily lead to genetic connectivity. Our findings emphasize the need for genetic data as an integral part of conservation monitoring, to enable the potential vulnerability of populations to be evaluated.

9.
Mol Ecol ; 31(24): 6390-6406, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208104

RESUMEN

Pathogen-mediated selection and sexual selection are important drivers of evolution. Both processes are known to target genes of the major histocompatibility complex (MHC), a gene family encoding cell-surface proteins that display pathogen peptides to the immune system. The MHC is also a model for understanding processes such as gene duplication and trans-species allele sharing. The class II MHC protein is a heterodimer whose peptide-binding groove is encoded by an MHC-IIA gene and an MHC-IIB gene. However, our literature review found that class II MHC papers on infectious disease or sexual selection included IIA data only 18% and 9% of the time, respectively. To assess whether greater emphasis on MHC-IIA is warranted, we analysed MHC-IIA sequence data from 50 species of vertebrates (fish, amphibians, birds, mammals) to test for polymorphism and positive selection. We found that the number of MHC-IIA alleles within a species was often high, and covaried with sample size and number of MHC-IIA genes assayed. While MHC-IIA variability tended to be lower than that of MHC-IIB, the difference was only ~25%, with ~3 fewer IIA alleles than IIB. Furthermore, the unexpectedly high MHC-IIA variability showed clear signatures of positive selection in most species, and positive selection on MHC-IIA was stronger in fish than in other surveyed vertebrate groups. Our findings underscore that MHC-IIA can be an important target of selection. Future studies should therefore expand the characterization of MHC-IIA at both allelic and genomic scales, and incorporate MHC-IIA into models of fitness consequences of MHC variation.


Asunto(s)
Complejo Mayor de Histocompatibilidad , Polimorfismo Genético , Animales , Filogenia , Complejo Mayor de Histocompatibilidad/genética , Vertebrados/genética , Alelos , Mamíferos/genética , Peces/genética , Selección Genética , Genes MHC Clase II/genética
10.
Environ Sci Technol ; 56(3): 1675-1687, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35014794

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental contaminants that have been linked to adverse health effects in wildlife and humans. Here, we report the presence of PFASs in Eurasian otters (Lutra lutra) in England and Wales and their association with anthropogenic sources. The following 15 compounds were analyzed: 10 perfluoroalkyl carboxylic acids (PFCAs), 4 perfluoroalkyl sulfonic acids (PFSAs), and perfluorooctane sulfonamide, in livers of 50 otters which died between 2007 and 2009. PFASs were detected in all otters analyzed, with 12/15 compounds detected in ≥80% of otters. Perfluorooctane sulfonate (PFOS) accounted for 75% of the ΣPFAS profile, with a maximum concentration of 6800 µg/kg wet weight (ww). Long-chain (≥C8) PFCAs accounted for 99.9% of the ΣPFCA profile, with perfluorodecanoic acid and perfluorononanoic acid having the highest maxima (369 µg/kg ww and 170 µg/kg ww, respectively). Perfluorooctanoic acid (PFOA) concentrations were negatively associated with the distance from a factory that used PFOA in polytetrafluoroethylene manufacture. Most PFAS concentrations in otters were positively associated with load entering wastewater treatment works (WWTW) and with arable land, suggesting that WWTW effluent and sewage sludge-amended soils are significant pathways of PFASs into freshwaters. Our results reveal the widespread pollution of British freshwaters with PFASs and demonstrate the utility of otters as effective sentinels for spatial variation in PFAS concentrations.


Asunto(s)
Fluorocarburos , Nutrias , Contaminantes Químicos del Agua , Animales , Ácidos Carboxílicos , Fluorocarburos/análisis , Humanos , Nutrias/metabolismo , Aguas del Alcantarillado , Ácidos Sulfónicos , Gales , Contaminantes Químicos del Agua/análisis
11.
Mitochondrial DNA B Resour ; 7(1): 153-155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35005230

RESUMEN

Anilany helenae is a Critically Endangered frog native to the central highlands of Madagascar. Due to ongoing habitat loss of its known range, this species' population is considered declining, while little is known about its ecology, behavior, and taxonomy. Within the context of developing tools that can aid the conservation of Madagascar's amphibian fauna, and add to the continued understanding of their taxonomy, we assembled its complete mitochondrial genome (Genbank Accession number MZ751042). This contributes the first complete mitochondrial genome of a microhylid from Madagascar, despite there being over 100 species in the Cophylinae subfamily alone. Anilany helenae's circular mitochondrial genome is 17,519 bp long, contains 37 genes, and exhibits differences in gene arrangement compared with other microhylids, including the placement of protein coding genes nad1 and nad2. A phylogeny of the 13 protein coding genes of the few Madagascan anuran mitogenomes available, along with species from Africa and East Asia, places A. helenae along with the New Guinean Mantophryne lateralis in a basal position with respect to the other microhylids in the tree.

12.
Int J Parasitol Parasites Wildl ; 13: 178-185, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33134077

RESUMEN

Parasites are fundamental components within all ecosystems, shaping interaction webs, host population dynamics and behaviour. Despite this, baseline data is lacking to understand the parasite ecology of many Arctic species, including the wolverine (Gulo gulo), a top Arctic predator and scavenger. Here, we combined traditional count methods (i.e. adult helminth recovery, where taxonomy was confirmed by molecular identification) with 18S rRNA high-throughput sequencing to document the wolverine parasite community. Further, we investigated whether the abundance of parasites detected using traditional methods were associated with host metadata, latitude, and longitude (ranging from the northern limit of the boreal forest to the low Arctic and Arctic tundra in Nunavut, Canada). Adult parasites in intestinal contents were identified as Baylisascaris devosi in 72% (n = 39) of wolverines and Taenia spp. in 22% (n = 12), of which specimens from 2 wolverines were identified as T. twitchelli based on COX1 sequence. 18S rRNA high-throughput sequencing on DNA extracted from faeces detected additional parasites, including a pseudophyllid cestode (Diplogonoporus spp. or Diphyllobothrium spp.), two metastrongyloid lungworms (Angiostrongylus spp. or Aelurostrongylus spp., and Crenosoma spp.), an ascarid nematode (Ascaris spp. or Toxocara spp.), a Trichinella spp. nematode, and the protozoan Sarcocystis spp., though each at a prevalence less than 13% (n = 7). The abundance of B. devosi significantly decreased with latitude (slope = -0.68; R2 = 0.17; P = 0.004), suggesting a northerly limit in distribution. We describe B. devosi and T. twitchelli in Canadian wolverines for the first time since 1978, and extend the recorded geographic distribution of these parasites ca 2000 km to the East and into the tundra ecosystem. Our findings illustrate the value of molecular methods in support of traditional methods, encouraging additional work to improve the advancement of molecular screening for parasites.

13.
Ecol Evol ; 10(17): 9283-9300, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953061

RESUMEN

Encompassing some of the major hotspots of biodiversity on Earth, large mountain systems have long held the attention of evolutionary biologists. The region of the Qinghai-Tibet Plateau (QTP) is considered a biogeographic source for multiple colonization events into adjacent areas including the northern Palearctic. The faunal exchange between the QTP and adjacent regions could thus represent a one-way street ("out of" the QTP). However, immigration into the QTP region has so far received only little attention, despite its potential to shape faunal and floral communities of the QTP. In this study, we investigated centers of origin and dispersal routes between the QTP, its forested margins and adjacent regions for five clades of alpine and montane birds of the passerine superfamily Passeroidea. We performed an ancestral area reconstruction using BioGeoBEARS and inferred a time-calibrated backbone phylogeny for 279 taxa of Passeroidea. The oldest endemic species of the QTP was dated to the early Miocene (ca. 20 Ma). Several additional QTP endemics evolved in the mid to late Miocene (12-7 Ma). The inferred centers of origin and diversification for some of our target clades matched the "out of Tibet hypothesis' or the "out of Himalayas hypothesis" for others they matched the "into Tibet hypothesis." Three radiations included multiple independent Pleistocene colonization events to regions as distant as the Western Palearctic and the Nearctic. We conclude that faunal exchange between the QTP and adjacent regions was bidirectional through time, and the QTP region has thus harbored both centers of diversification and centers of immigration.

14.
Wellcome Open Res ; 5: 33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32258427

RESUMEN

We present a genome assembly from an individual male Lutra lutra (the Eurasian river otter; Vertebrata; Mammalia; Eutheria; Carnivora; Mustelidae). The genome sequence is 2.44 gigabases in span. The majority of the assembly is scaffolded into 20 chromosomal pseudomolecules, with both X and Y sex chromosomes assembled.

15.
Sci Rep ; 10(1): 1279, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992729

RESUMEN

Cattle domestication occurred at least twice independently and gave rise to the modern taurine and indicine cattle breeds. European cattle diversity is generally dominated by taurine cattle, although elevated levels of indicine ancestry have been recorded in several breeds from southern Europe. Here we use genome-wide high-density SNP genotyping data to investigate the taurine and indicine ancestry in southern European cattle, based on a dataset comprising 508 individuals from 23 cattle breeds of taurine, indicine and mixed ancestry, including three breeds from Central Italy known to exhibit the highest levels of indicine introgression among southern European breeds. Based on local genomic ancestry analyses, we reconstruct taurine and indicine ancestry genome-wide and along chromosomes. We scrutinise local genomic introgression signals and identify genomic regions that have introgressed from indicine into taurine cattle under positive selection, harbouring genes with functions related to body size and feed efficiency. These findings suggest that indicine-derived traits helped enhance Central Italian cattle through adaptive introgression. The identified genes could provide genomic targets for selection for improved cattle performance. Our findings elucidate the key role of adaptive introgression in shaping the phenotypic features of modern cattle, aided by cultural and livestock exchange among historic human societies.


Asunto(s)
Bovinos/genética , Domesticación , Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Estudio de Asociación del Genoma Completo , Italia
16.
Sci Rep ; 7(1): 7623, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790322

RESUMEN

Mouflon (Ovis aries musimon) became extinct from mainland Europe after the Neolithic, but remnant populations from the Mediterranean islands of Corsica and Sardinia have been used for reintroductions across Europe since the 19th-century. Mouflon x sheep hybrids are larger-bodied than mouflon, potentially showing increased male reproductive success, but little is known about genomic levels of admixture, or about the adaptive significance of introgression between resident mouflon and local sheep breeds. Here we analysed Ovine medium-density SNP array genotypes of 92 mouflon from six geographic regions, along with data from 330 individuals of 16 domestic sheep breeds. We found lower levels of genetic diversity in mouflon than in domestic sheep, consistent with past bottlenecks in mouflon. Introgression signals were bidirectional and affected most mouflon and sheep populations, being strongest in one Sardinian mouflon population. Developing and using a novel approach to identify chromosomal regions with consistent introgression signals, we infer adaptive introgression from mouflon to domestic sheep related to immunity mechanisms, but not in the opposite direction. Further, we infer that Soay and Sarda sheep carry introgressed mouflon alleles involved in bitter taste perception and/or innate immunity. Our results illustrate the potential for adaptive introgression even among recently diverged populations.


Asunto(s)
Cruzamiento/métodos , Haplotipos , Filogenia , Oveja Doméstica/genética , Ovinos/genética , Animales , Cruzamientos Genéticos , Europa (Continente) , Femenino , Francia , Variación Genética , Especies Introducidas , Italia , Masculino , Filogeografía , Polimorfismo de Nucleótido Simple , Ovinos/clasificación , Oveja Doméstica/clasificación
17.
Front Zool ; 13: 28, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27366197

RESUMEN

BACKGROUND: Bitter taste perception is essential for species with selective food intake, enabling them to avoid unpalatable or toxic items. Previous studies noted a marked variation in the number of TAS2R genes among various vertebrate species, but the underlying causes are not well understood. Laurasiatherian mammals have highly diversified dietary niche, showing repeated evolution of specialized feeding preferences in multiple lineages and offering a unique chance to investigate how various feeding niches are associated with copy number variation for bitter taste receptor genes. RESULTS: Here we investigated the evolutionary trajectories of TAS2Rs and their implications on bitter taste perception in whole-genome assemblies of 41 Laurasiatherian species. The number of intact TAS2Rs copies varied considerably, ranging from 0 to 52. As an extreme example of a narrow dietary niche, the Chinese pangolin possessed the lowest number of intact TAS2Rs (n = 2) among studied terrestrial vertebrates. Marine mammals (cetacea and pinnipedia), which swallow prey whole, presented a reduced copy number of TAS2Rs (n = 0-5). In contrast, independent insectivorous lineages, such as the shrew and insectivorous bats possessed a higher TAS2R diversity (n = 52 and n = 20-32, respectively), exceeding that in herbivores (n = 9-22) and omnivores (n = 18-22). CONCLUSIONS: Besides herbivores, insectivores in Laurasiatheria tend to have more functional TAS2Rs in comparison to carnivores and omnivores. Furthermore, animals swallowing food whole (cetacean, pinnipedia and pangolin) have lost most functional TAS2Rs. These findings provide the most comprehensive view of the bitter taste gene repertoire in Laurasiatherian mammals to date, casting new light on the relationship between losses and gains of TAS2Rs and dietary specialization in mammals.

18.
PLoS One ; 11(3): e0150245, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26982578

RESUMEN

The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius) has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%), leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela.


Asunto(s)
Caimanes y Cocodrilos/fisiología , Paternidad , Animales , Marcadores Genéticos , Masculino , Repeticiones de Microsatélite/genética , Venezuela
19.
Forensic Sci Int Genet ; 19: 197-204, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26264959

RESUMEN

High-resolution Y-chromosomal markers have been applied to humans and other primates to study population genetics, migration, social structures and reproduction. Y-linked markers allow the direct assessment of the genetic structure and gene flow of uniquely male inherited lineages and may also be useful for wildlife conservation and forensics, but have so far been available only for few wild species. Thus, we have developed two multiplex PCR reactions encompassing nine Y-STR markers identified from the brown bear (Ursus arctos) and tested them on hair, fecal and tissue samples. The multiplex PCR approach was optimized and analyzed for species specificity, sensitivity and stutter-peak ratios. The nine Y-STRs also showed specific STR-fragments for male black bears and male polar bears, while none of the nine markers produced any PCR products when using DNA from female bears or males from 12 other mammals. The multiplex PCR approach in two PCR reactions could be amplified with as low as 0.2 ng template input. Precision was high in DNA templates from hairs, fecal scats and tissues, with standard deviations less than 0.14 and median stutter ratios from 0.04 to 0.63. Among the eight di- and one tetra-nucleotide repeat markers, we detected simple repeat structures in seven of the nine markers with 9-25 repeat units. Allelic variation was found for eight of the nine Y-STRs, with 2-9 alleles for each marker and a total of 36 alleles among 453 male brown bears sampled mainly from Northern Europe. We conclude that the multiplex PCR approach with these nine Y-STRs would provide male bear Y-chromosomal specificity and evidence suited for samples from conservation and wildlife forensics.


Asunto(s)
Heces , Cabello , Repeticiones de Microsatélite/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Ursidae/genética , Cromosoma Y , Animales , Humanos , Límite de Detección , Reproducibilidad de los Resultados
20.
Genome Biol Evol ; 7(7): 2010-22, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26019166

RESUMEN

The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears.


Asunto(s)
Evolución Molecular , Ursidae/genética , Cromosoma Y , Animales , Femenino , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Ursidae/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...