Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764224

RESUMEN

Traditional monoclonal antibodies such as Trastuzumab encounter limitations when treating Human Epidermal Growth Factor Receptor 2 (HER2)-positive breast cancer, particularly in cases that develop resistance. This study introduces plant-derived anti-HER2 variable fragments of camelid heavy chain domain (VHH) fragment crystallizable region (Fc) KEDL(K) antibody as a potent alternative for overcoming these limitations. A variety of biophysical techniques, in vitro assays, and in vivo experiments uncover the antibody's nanoscale binding dynamics with transmembrane HER2 on living cells. Single-molecule force spectroscopy reveals the rapid formation of two robust bonds, exhibiting approximately 50 pN force resistance and bond lifetimes in the second range. The antibody demonstrates a specific affinity for HER2-positive breast cancer cells, including those that are Trastuzumab-resistant. Moreover, in immune-deficient mice, the plant-derived anti-HER2 VHH-FcK antibody exhibits superior antitumor activity, especially against tumors that are resistant to Trastuzumab. These findings underscore the plant-derived antibody's potential as an impactful immunotherapeutic strategy for treating Trastuzumab-resistant HER2-positive breast cancer.

3.
Nat Commun ; 13(1): 7926, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566234

RESUMEN

Recent waves of COVID-19 correlate with the emergence of the Delta and the Omicron variant. We report that the Spike trimer acts as a highly dynamic molecular caliper, thereby forming up to three tight bonds through its RBDs with ACE2 expressed on the cell surface. The Spike of both Delta and Omicron (B.1.1.529) Variant enhance and markedly prolong viral attachment to the host cell receptor ACE2, as opposed to the early Wuhan-1 isolate. Delta Spike shows rapid binding of all three Spike RBDs to three different ACE2 molecules with considerably increased bond lifetime when compared to the reference strain, thereby significantly amplifying avidity. Intriguingly, Omicron (B.1.1.529) Spike displays less multivalent bindings to ACE2 molecules, yet with a ten time longer bond lifetime than Delta. Delta and Omicron (B.1.1.529) Spike variants enhance and prolong viral attachment to the host, which likely not only increases the rate of viral uptake, but also enhances the resistance of the variants against host-cell detachment by shear forces such as airflow, mucus or blood flow. We uncover distinct binding mechanisms and strategies at single-molecule resolution, employed by circulating SARS-CoV-2 variants to enhance infectivity and viral transmission.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Imagen Individual de Molécula , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Acoplamiento Viral
4.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36195094

RESUMEN

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , Lectinas/farmacología , Manosa/farmacología , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/farmacología , Antivirales/farmacología
5.
EMBO J ; 40(19): e108375, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375000

RESUMEN

New SARS-CoV-2 variants are continuously emerging with critical implications for therapies or vaccinations. The 22 N-glycan sites of Spike remain highly conserved among SARS-CoV-2 variants, opening an avenue for robust therapeutic intervention. Here we used a comprehensive library of mammalian carbohydrate-binding proteins (lectins) to probe critical sugar residues on the full-length trimeric Spike and the receptor binding domain (RBD) of SARS-CoV-2. Two lectins, Clec4g and CD209c, were identified to strongly bind to Spike. Clec4g and CD209c binding to Spike was dissected and visualized in real time and at single-molecule resolution using atomic force microscopy. 3D modelling showed that both lectins can bind to a glycan within the RBD-ACE2 interface and thus interferes with Spike binding to cell surfaces. Importantly, Clec4g and CD209c significantly reduced SARS-CoV-2 infections. These data report the first extensive map and 3D structural modelling of lectin-Spike interactions and uncovers candidate receptors involved in Spike binding and SARS-CoV-2 infections. The capacity of CLEC4G and mCD209c lectins to block SARS-CoV-2 viral entry holds promise for pan-variant therapeutic interventions.


Asunto(s)
Receptores Mitogénicos/metabolismo , SARS-CoV-2/metabolismo , Animales , Sitios de Unión/fisiología , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Glicosilación , Células HEK293 , Humanos , Ratones , Simulación de Dinámica Molecular , Unión Proteica/fisiología , Células Vero , Internalización del Virus
6.
Commun Biol ; 4(1): 268, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649506

RESUMEN

As opposed to pathogens passively circulating in the body fluids of their host, pathogenic species within the Spirochetes phylum are able to actively coordinate their movement in the host to cause systemic infections. Based on the unique morphology and high motility of spirochetes, we hypothesized that their surface adhesive molecules might be suitably adapted to aid in their dissemination strategies. Designing a system that mimics natural environmental signals, which many spirochetes face during their infectious cycle, we observed that a subset of their surface proteins, particularly Decorin binding protein (Dbp) A/B, can strongly enhance the motility of spirochetes in the extracellular matrix of the host. Using single-molecule force spectroscopy, we disentangled the mechanistic details of DbpA/B and decorin/laminin interactions. Our results show that spirochetes are able to leverage a wide variety of adhesion strategies through force-tuning transient molecular binding to extracellular matrix components, which concertedly enhance spirochetal dissemination through the host.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Borrelia burgdorferi/metabolismo , Matriz Extracelular/microbiología , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Adhesinas Bacterianas/genética , Animales , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidad , Decorina/metabolismo , Matriz Extracelular/metabolismo , Femenino , Interacciones Huésped-Patógeno , Cinética , Laminina/metabolismo , Enfermedad de Lyme/metabolismo , Movimiento , Unión Proteica , Conejos , Imagen Individual de Molécula
7.
J Learn Disabil ; 44(2): 196-212, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21383110

RESUMEN

Methylphenidate (MPH) often ameliorates attention-deficit/hyperactivity disorder (ADHD) behavioral dysfunction according to indirect informant reports and rating scales. The standard of care behavioral MPH titration approach seldom includes direct neuropsychological or academic assessment data to determine treatment efficacy. Documenting "cool" executive-working memory (EWM) and "hot" self-regulation (SR) neuropsychological impairments could aid in differential diagnosis of ADHD subtypes and determining cognitive and academic MPH response. In this study, children aged 6 to 16 with ADHD inattentive type (IT; n = 19) and combined type (n = 33)/hyperactive-impulsive type (n = 4) (CT) participated in double-blind placebo-controlled MPH trials with baseline and randomized placebo, low MPH dose, and high MPH dose conditions. EWM/ SR measures and behavior ratings/classroom observations were rank ordered separately across conditions, with nonparametric randomization tests conducted to determine individual MPH response. Participants were subsequently grouped according to their level of cool EWM and hot SR circuit dysfunction. Robust cognitive and behavioral MPH response was achieved for children with significant baseline EWM/SR impairment, yet response was poor for those with adequate EWM/ SR baseline performance. Even for strong MPH responders, the best dose for neuropsychological functioning was typically lower than the best dose for behavior. Findings offer one possible explanation for why long-term academic MPH treatment gains in ADHD have not been realized. Implications for academic achievement and medication titration practices for children with behaviorally diagnosed ADHD will be discussed.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/psicología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Función Ejecutiva , Metilfenidato/uso terapéutico , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Niño , Diagnóstico Diferencial , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Evaluación Educacional , Función Ejecutiva/efectos de los fármacos , Femenino , Humanos , Aprendizaje/efectos de los fármacos , Masculino , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...