Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198483

RESUMEN

A 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair implemented in DHBI-TPB surfactant sensor was used for the potentiometric quantification of anionic surfactants in detergents and commercial household care products. The DHBI-TPB ion-pair was characterized by FTIR spectroscopy and computational analysis which revealed a crucial contribution of the C-H∙∙∙π contacts for the optimal complex formation. The DHBI-TPB sensor potentiometric response showed excellent analytical properties and Nernstian slope for SDS (60.1 mV/decade) with LOD 3.2 × 10-7 M; and DBS (58.4 mV/decade) with LOD 6.1 × 10-7 M was obtained. The sensor possesses exceptional resistance to different organic and inorganic interferences in broad pH (2-10) range. DMIC used as a titrant demonstrated superior analytical performances for potentiometric titrations of SDS, compared to other tested cationic surfactants (DMIC > CTAB > CPC > Hyamine 1622). The combination of DHBI-TPB sensor and DMIC was successfully employed to perform titrations of the highly soluble alkane sulfonate homologues. Nonionic surfactants (increased concentration and number of EO groups) had a negative impact on anionic surfactant titration curves and a signal change. The DHBI-TPB sensor was effectively employed for the determination of technical grade anionic surfactants presenting the recoveries from 99.5 to 101.3%. The sensor was applied on twelve powered samples as well as liquid-gel and handwashing home care detergents containing anionic surfactants. The obtained results showed good agreement compared to the outcomes measured by ISE surfactant sensor and a two-phase titration method. The developed DHBI-TPB surfactant sensor could be used for quality control in industry and has great potential in environmental monitoring.


Asunto(s)
Detergentes/química , Imidazoles/química , Ionóforos/química , Polímeros/química , Potenciometría/métodos , Tensoactivos/análisis , Aniones/análisis , Electrodos , Concentración de Iones de Hidrógeno
2.
Molecules ; 26(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806643

RESUMEN

A novel, simple, low-cost, and user-friendly potentiometric surfactant sensor based on the new 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair for the detection of cationic surfactants in personal care products and disinfectants is presented here. The new cationic surfactant DHBI-Br was successfully synthesized and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectrometry, liquid chromatography-mass spectrometry (LC-MS) and elemental analysis and was further employed for DHBI-TPB ion-pair preparation. The sensor gave excellent response characteristics for CTAB, CPC and Hyamine with a Nernstian slope (57.1 to 59.1 mV/decade) whereas the lowest limit of detection (LOD) value was measured for CTAB (0.3 × 10-6 M). The sensor exhibited a fast dynamic response to dodecyl sulfate (DDS) and TPB. High sensor performances stayed intact regardless of the employment of inorganic and organic cations and in a broad pH range (2-11). Titration of cationic and etoxylated (EO)-nonionic surfactant (NSs) (in Ba2+) mixtures with TPB revealed the first inflexion point for a cationic surfactant and the second for an EO-nonionic surfactant. The increased concentration of EO-nonionic surfactants and the number of EO groups had a negative influence on titration curves and signal change. The sensor was successfully applied for the quantification of technical-grade cationic surfactants and in 12 personal care products and disinfectants. The results showed good agreement with the measurements obtained by a commercial surfactant sensor and by a two-phase titration. A good recovery for the standard addition method (98-102%) was observed.


Asunto(s)
Técnicas Biosensibles/métodos , Cationes/química , Cosméticos/análisis , Desinfectantes/análisis , Imidazoles/química , Potenciometría/métodos , Tensoactivos/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA