Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Dev Biol ; 14: 6, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24528894

RESUMEN

BACKGROUND: The process of fertilization involves a cell fusion event between the sperm and oocyte. Although sperm contain mitochondria when they fuse with the oocyte, paternal mitochondrial genomes do not persist in offspring and, thus, mitochondrial inheritance is maternal in most animals. Recent evidence suggests that paternal mitochondria may be eliminated via autophagy after fertilization. In C. elegans, sperm-specific organelles called membraneous organelles (MO) cluster together with paternal mitochondria immediately after fertilization. These MOs but not the mitochondria become polyubiquitinated and associated with proteasomes. The current model for the elimination of paternal mitochondria in C. elegans is that ubiquitination of the MOs induces the formation of autophagosomes which also capture the mitochondria and cause their degradation. RESULTS: Sperm-derived mitochondria and MOs show a sharp decrease in number during the time between sperm-oocyte fusion and the onset of mitosis. During this time, paternal mitochondria remain closely clustered with the MOs. Two types of polyubiquitin chains are observed on the MOs: K48-linked ubiquitin chains which are known to lead to proteasomal degradation and K63-linked ubiquitin chains which have been linked to autophagy. K48-linked ubiquitin chains and proteasomes show up on MOs very soon after sperm-oocyte fusion. These are present on MOs for only a short period of time. Maternal proteasomes localize to MOs and sperm proteasomes localize to structures that are at the periphery of the MO cluster suggesting that these two proteasome populations may have different roles in degrading paternal material. K63-linked ubiquitin chains appear on MOs early and remain throughout the first several cell divisions. CONCLUSIONS: Since there are two different types of polyubiquitin chains associated with sperm organelles and their timing differs, it suggests that ubiquitin has two or more roles in the processing of sperm components after fertilization. The K63 chains potentially provide a signal for autophagy of paternal organelles, whereas the K48 chains and proteasomes may be involved in degradation of specific proteins.


Asunto(s)
Fertilización/fisiología , Orgánulos/metabolismo , Espermatozoides/metabolismo , Ubiquitinación/fisiología , Animales , Animales Modificados Genéticamente , Autofagia/fisiología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Organismos Hermafroditas , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisina/metabolismo , Masculino , Microscopía Confocal , Mitocondrias/metabolismo , Oocitos/citología , Oocitos/metabolismo , Fagosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Espermatozoides/citología , Factores de Tiempo , Ubiquitina/metabolismo , Proteína Fluorescente Roja
2.
Autophagy ; 8(3): 421-3, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22361582

RESUMEN

In most animals, during oocyte fertilization the spermatozoon provides DNA and centrioles together with some cytoplasm and organelles, but paternal mitochondria are generally eliminated in the embryo. Using the model animal C. elegans we have shown that paternal organelle degradation is dependent on the formation of autophagosomes a few minutes after fertilization. This macroautophagic process is preceded by an active ubiquitination of some spermatozoon-inherited organelles. Analysis of fertilized mouse embryos suggests that this autophagy event is evolutionarily conserved.


Asunto(s)
Autofagia , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Orgánulos/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Animales , Caenorhabditis elegans/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Espermatozoides/ultraestructura , Ubiquitina/metabolismo
3.
Science ; 334(6059): 1144-7, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22033522

RESUMEN

In sexual reproduction of most animals, the spermatozoon provides DNA and centrioles, together with some cytoplasm and organelles, to the oocyte that is being fertilized. Paternal mitochondria and their genomes are generally eliminated in the embryo by an unknown degradation mechanism. We show that, upon fertilization, a Caenorhabditis elegans spermatozoon triggers the recruitment of autophagosomes within minutes and subsequent paternal mitochondria degradation. Whereas the nematode-specific sperm membranous organelles are ubiquitinated before autophagosome formation, the mitochondria are not. The degradation of both paternal structures and mitochondrial DNA requires an LC3-dependent autophagy. Analysis of fertilized mouse embryos shows the localization of autophagy markers, which suggests that this autophagy event is evolutionarily conserved to prevent both the transmission of paternal mitochondrial DNA to the offspring and the establishment of heteroplasmy.


Asunto(s)
Autofagia , Caenorhabditis elegans/embriología , ADN Mitocondrial/genética , Embrión no Mamífero/fisiología , Mitocondrias/metabolismo , Espermatozoides/ultraestructura , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/análisis , ADN Mitocondrial/análisis , ADN Mitocondrial/metabolismo , Desarrollo Embrionario , Femenino , Fertilización , Organismos Hermafroditas , Lisosomas/metabolismo , Masculino , Ratones , Oocitos/fisiología , Orgánulos/metabolismo , Fagosomas/metabolismo , Espermatozoides/química , Espermatozoides/fisiología , Ubiquitinación
4.
J Vis Exp ; (54)2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21897352

RESUMEN

Caenorhabditis elegans has often been used as a model system in studies of early developmental processes. The transparency of the embryos, the genetic resources, and the relative ease of transformation are qualities that make C. elegans an excellent model for early embryogenesis. Laser-based confocal microscopy and fluorescently labeled tags allow researchers to follow specific cellular structures and proteins in the developing embryo. For example, one can follow specific organelles, such as lysosomes or mitochondria, using fluorescently labeled dyes. These dyes can be delivered to the early embryo by means of microinjection into the adult gonad. Also, the localization of specific proteins can be followed using fluorescent protein tags. Examples are presented here demonstrating the use of a fluorescent lysosomal dye as well as fluorescently tagged histone and ubiquitin proteins. The labeled histone is used to visualize the DNA and thus identify the stage of the cell cycle. GFP-tagged ubiquitin reveals the dynamics of ubiquitinated vesicles in the early embryo. Observations of labeled lysosomes and GFP:: ubiquitin can be used to determine if there is colocalization between ubiquitinated vesicles and lysosomes. A technique for the microinjection of the lysosomal dye is presented. Techniques for generating transgenenic strains are presented elsewhere. For imaging, embryos are cut out of adult hermaphrodite nematodes and mounted onto 2% agarose pads followed by time-lapse microscopy on a standard laser scanning confocal microscope or a spinning disk confocal microscope. This methodology provides for the high resolution visualization of early embryogenesis.


Asunto(s)
Caenorhabditis elegans/embriología , Microscopía/métodos , Imagen de Lapso de Tiempo/métodos , Animales , Colorantes Fluorescentes/química , Microinyecciones
5.
BMC Cell Biol ; 8: 32, 2007 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-17663792

RESUMEN

BACKGROUND: Protein aggregation is a hallmark of several neurodegenerative diseases including Huntington's disease and Parkinson's disease. Proteins containing long, homopolymeric stretches of glutamine are especially prone to form aggregates. It has long been known that the small protein modifier, ubiquitin, localizes to these aggregates. In this report, nematode and cell culture models for polyglutamine aggregation are used to investigate the role of the ubiquitin pathway in protein aggregation. RESULTS: Ubiquitin conjugating enzymes (Ubc's) were identified that affect polyglutamine aggregates in C. elegans. Specifically, RNAi knockdown of ubc-2 or ubc-22 causes a significant increase in the size of aggregates as well as a reduction in aggregate number. In contrast, RNAi of ubc-1, ubc-13, or uev-1 leads to a reduction of aggregate size and eliminates ubiquitin and proteasome localization to aggregates. In cultured human cells, shRNA knockdown of human homologs of these Ubc's (Ube2A, UbcH5b, and E2-25K) causes similar effects indicating a conserved role for ubiquitination in polyglutamine protein aggregation. CONCLUSION: Results of knockdown of different Ubc enzymes indicate that at least two different and opposing ubiquitination events occur during polyglutamine aggregation. The loss of ubiquitin localization after ubc-1, ubc-13, or uev-1 knockdown suggests that these enzymes might be directly involved in ubiquitination of aggregating proteins.


Asunto(s)
Péptidos/metabolismo , Enzimas Ubiquitina-Conjugadoras/fisiología , Animales , Proteínas de Caenorhabditis elegans , Células Cultivadas , Humanos , Unión Proteica , Proteínas , ARN Interferente Pequeño/farmacología , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA